共查询到20条相似文献,搜索用时 0 毫秒
1.
Upland rice cultivars were evaluated in the greenhouse for susceptibility to the rice blast disease caused by Pyricularia grisea Sacc., on two upland soils from the Philippines previously considered to be “blast conducive” and “blast non-conducive”.
Under monocyclic inoculation tests plants grown in conducive soil showed significantly greater lesion development than plants
of the same cultivar grown in non-conducive soil: cultivars considered to be susceptible to the isolates used showed increased
number of susceptible-type lesions; resistant cultivars showed increased number of hypersensitive resistant-type lesions.
A similar effect was observed under polycyclic tests where several generations of the pathogen were allowed to develop on
the test plants. Dilution of conducive soil with non-conducive soil resulted in a corresponding reduction of disease severity,
although this was most pronounced on resistant cultivars. Removal of leaf epicuticular waxes (LEW) using organic solvents
increased the number of resistant-type lesions on resistant cultivars grown in both soils following inoculation. Susceptible
plants were not suitable for quantifying the relative blast conduciveness of a soil because of the extreme environmental sensitivity
of the bioassay and the tendency of lesions to coalesce.
Comparing numbers of resistant-type lesions on leaves of plants stripped of LEW and inoculated with an incompatible P. grisea isolate among plants grown in different soils proved to be a satisfactory means of distinguishing the relative blast conduciveness
of soils under controlled conditions. This method was field tested in eastern India and results corroborated farmer assessment
of which soils were blast conducive. Using incompatible isolate-cultivar combinations and LEW-free leaves is proposed as a
simple bioassay for assessing blast conduciveness of soils and should prove useful in regional characterization of rice blast
risk. 相似文献
2.
王占春;钟桂涛;张贝贝;谢怡琳;唐定中;王伟 《遗传》2025,47(5):533-545
水稻(Oryza sativa L.)是我国重要的粮食作物,其生长发育过程经常受到稻瘟病的威胁,严重时导致巨大的经济损失。挖掘和利用水稻稻瘟病抗性基因,培育具有广谱抗性的优良品种是目前防治稻瘟病最经济有效的方法。稻瘟病抗性基因一般为编码含有核苷酸结合结构域(nucleotide-binding,NB)和富含亮氨酸重复结构域(leucine-rich repeat,LRR)的基因家族,也被叫做NLR基因,在水稻抗稻瘟病方面发挥至关重要的作用。因此,对NLR基因的挖掘以及阐明其与对应效应因子之间的识别和激活机制,对于培育抗病品种具有重要意义。本文对水稻中NLR基因的挖掘概况、NLR蛋白与稻瘟病菌效应因子之间的识别方式,以及成对NLR蛋白作用机制进行了总结和展望,旨在为水稻抗病育种提供参考。 相似文献
3.
抗稻瘟病水稻资源抗性基因Pita、Pib、Pi9以及Pikm的分布研究 总被引:2,自引:0,他引:2
利用抗稻瘟病水稻资源品种杂交,聚合多个抗性基因是培育持久抗稻瘟病水稻新品种的主要育种途径.利用分子标记技术对水稻抗性资源进行基因型鉴定是分子辅助聚合育种的基础.通过以亚华种业科学院稻瘟病病圃抗病水稻资源为材料,利用特异性分子标记对Pi9、Pita、Pib以及Pikm基因在水稻抗稻瘟病资源的分布进行了鉴定,初步建立了抗性基因数据库.同时对抗性基因及与抗性反应的相关性进行了探讨,结果表明以Pi9为主效基因,同时聚合Pita和Pib抗性基因能提高持久抗稻瘟病能力. 相似文献
4.
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium‐dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops. 相似文献
5.
Raviswamy Chandrakanth K. Narasimha Murthy 《Archives Of Phytopathology And Plant Protection》2013,46(15-16):852-878
AbstractRice blast is the leading fungal disease which is caused by Magnaporthe oryzae that contributes for the significant decline in the rice yield throughout the globe. There is a need for the understanding of biochemical changes in rice plant during blast infection for the development of novel disease control strategies. In the present study, we isolated M. oryzae from the local paddy fields and the fungal isolates (VCF and PON) were identified by ITS-PCR using genomic DNA samples. Further, we inoculated resistant (BR2655 and TUNGA) and susceptible (INTAN and HR12) rice cultivars with PON and VCF isolates. PON isolate showed relatively high virulence compared to VCF and standard MTCC fungal strains. Therefore, we evaluated the effect of PON on the total protein content and plant defence-related key enzymes (peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-glucosidase, chitinase and lipoxygenase) activities between 24- and 120-hour post-inoculation (hpi). The results demonstrated the decrease in total protein content in all the inoculated cultivars. In addition, we observed the variation in the activity of peroxidase, polyphenol oxidase, β-glucosidase, chitinase and lipoxygenase at different time points in all the tested rice plants compared to respective controls. However, no significant difference was observed in the phenylalanine ammonia lyase activity relative to its control. Taken together, this study emphasizes on the variation in the activities of plant defence enzymes in different plant cultivars against the tested fungal pathogen and also implementation of defence enzymes as biochemical markers for resistant breeding. 相似文献
6.
7.
Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats 总被引:13,自引:0,他引:13
Sakamoto Koji Tada Yuichi Yokozeki Yumi Akagi Hiromori Hayashi Nagao Fujimura Tatsuhito Ichikawa Norio 《Plant molecular biology》1999,40(5):847-855
Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide) is an agricultural chemical primarily used to prevent rice blast disease. Probenazole-treated rice acquires resistance to blast fungus irrespective of the rice variety. The chemical is applied prophylactically, and is thought to induce or bolster endogenous plant defenses. However, the mechanisms underlying this effect have not been established. To understand the mode of the chemical's action, we screened for novel probenazole-responsive genes in rice by means of differential display and identified a candidate gene, RPR1. RPR1 contains a nucleotide binding site and leucine-rich repeats, thus sharing structural similarity with known disease resistance genes. The expression of RPR1 in rice can be up-regulated by treatment with chemical inducers of systemic acquired resistance (SAR) and by inoculation with pathogens. RPR1-related sequences in rice varieties seem to be varied in sequence and/or expression, indicating that RPR1 itself is not a crucial factor for induced resistance in rice. However, Southern blot analysis revealed the existence of homologous sequences in all varieties examined. While the role of RPR1 has yet to be clarified, this is the first report of the identification of a member of this gene class and its induction during the systemic expression of induced disease resistance. 相似文献
8.
9.
Sensitivity to azoxystrobin and kresoxim‐methyl of 80 single‐spore isolates of Magnaporthe oryzae was determined. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting mycelial growth of the 80 M. oryzae isolates were 0.006–0.056 and 0.024–0.287 µg mL?1, respectively. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting conidial germination of the M. oryzae populations were 0.004–0.051 and 0.012–0.105 µg mL?1, respectively. There was significant difference in sensitivity to azoxystrobin or kresoxim‐methyl between the tested isolates representing differential sensitivity to carbendazim (MBC) and kitazin P (IBP); however, there was no correlation between this difference in sensitivity to azoxystrobin or kresoxim‐methyl and sensitivity to MBC or IBP, indicating that there was no cross‐resistance between azoxystrobin or kresoxim‐methyl and MBC or IBP. In the protective and curative experiments, kresoxim‐methyl exhibited higher protective and curative activity than azoxystrobin when applied at 150 and 250 µg mL?1 accordingly, while azoxystrobin exhibited stronger inhibitory activity against M. oryzae isolates than that of kresoxim‐methyl in the in vitro test. The results of field experiments also suggested that both azoxystrobin and kresoxim‐methyl at 187.5 g.a.i. ha?1 gave over 73% control efficacy in both sites, exhibiting excellent activity against rice blast. Taken together, azoxystrobin and kresoxim‐methyl could be a good substitute for MBC or IBP for controlling rice blast in China, but should be carefully used as they were both at‐risk. 相似文献
10.
国外引进水稻种质资源的稻瘟病抗性基因检测与评价 总被引:2,自引:0,他引:2
为了筛选出福建省水稻稻瘟病重发区育种中可利用的新抗性资源,在福建省上杭县对156份外引水稻种质资源进行了2年田间自然诱发鉴定,并对Pi2、Pi9、Pi5、Pi54、Pikm、Pita、Pia和Pib等8个稻瘟病抗性基因做了分子检测。结果表明:156份资源对苗瘟、叶瘟、穗颈瘟和综合抗性表现抗病的分别有10份、14份、29份和26份,且苗瘟抗性级别与叶瘟抗性级别(r=0.816,P<0.01)、苗瘟抗性级别与穗颈瘟抗性级别(r=0.347,P<0.01)、以及叶瘟抗性级别与穗颈瘟抗性级别(r=0.344,P<0.01),均呈极显著正相关。分子标记检测到携带稻瘟病抗性基因Pi9、Pi2、Pi54、Pikm、Pi5、Pib、Pia和Pita的水稻资源分别有1、6、20、22、37、88、101和106份,其中携带稻瘟病抗性基因Pi9和Pi2的水稻资源的抗性表现较好,表现抗病的超过60%,携带其他稻瘟病抗性基因的水稻资源表现抗病的均在50%以下;水稻资源携带0~6个稻瘟病抗性基因,随着携带抗性基因数目增加,抗病率呈上升趋势,综合抗性等级呈下降趋势。进一步研究发现,携带Pi9+Pi5+Pikm+Pia、Pi5+Pib+Pita+Pikm+Pia和Pi2+Pi54+Pib+Pita+Pikm+Pia等3个基因型的水稻资源,稻瘟病抗性较好。最后,筛选了8份稻瘟病抗性较好的材料,提供育种者参考、利用。 相似文献
11.
稻瘟病和白叶枯病是由稻温病菌(Magnaporthe oryzae)和白叶枯病菌(Xanthomonas oryzae pv.oryzae)引起的两种主要水稻病害,也是制约中国水稻生产的主要病害。为了从DNA水平探索造成水稻感病品种‘丽江新团黑谷’(LTH)和高抗品种‘特特普’(Tetep,TTP)间抗病性差异的分子基础,该研究对其已知的3个抗稻瘟病基因和3个抗白叶枯基因所在DNA区段分别进行PCR扩增,将等量混合的PCR产物再与基因组重测序样品按Ct值差值(ΔCt)~10的比例混合,采用二代测序技术进行一次性测序和比较分析,并对有差异的基因区域进行常规传统测序验证,以确定这2个品种中抗性基因(R基因)的数目和结构与品种抗病或感病表型的关联性。实验结果表明,二代测序能够快速并准确地寻找到2个不同水稻品种中多个特定基因的序列差异,且差异位点与常规测序结果相符。从LTH和TTP这2种抗性不同水稻品种在多个抗性基因的DNA水平差异来看,有差异的抗性基因位点在高抗品种TTP中大都与原始抗性基因序列相同,而对应的普感品种LTH的抗性基因往往多表现为氨基酸突变,这些序列差异很可能就是导致TTP与LTH抗性差异的分子基础。 相似文献
12.
水稻品种多样性遗传分析与稻瘟病控制 总被引:13,自引:0,他引:13
以2个籼型杂交稻——汕优63(A)和汕优22(B)、2个地方糯稻品种——黄壳糯(C)和紫糯(D)和3个粳稻品种——合系41(E)、楚粳12(F)和8126(G)为材料进行抗病基因同源序列(Resistance Gene Analogue,RGA)遗传分析。结果表明,杂交稻品种间以及粳稻品种间的抗性遗传较为相似,其相似系数分别为0.86和0.84。糯稻品种间以及糯稻、杂交稻和粳稻间的抗性遗传差异较大,相似系数为0.45。聚类分析表明,RGA结果与品种的系谱来源相吻合,与品种的田间抗性基本一致。根据品种的抗性遗传差异、农艺性状和经济性状的不同,在云南籼稻区的建水和石屏县以及温暖粳稻区的泸西县分别选用5种(A/C、A/D、B/C、B/D和A/B)和2种(E/C和E/F/G)不同的品种组合进行品种多样性混合间栽控制稻瘟病田间试验,结果表明,抗性遗传差异大(相似性:0.45~0.77)的5个品种混合间栽组合对稻瘟病有极为显著的控制效果,尤其是在混合间栽中高度感病的优质地方稻品种稻瘟病的发病率、病情指数均有极显著的下降,防治效果达54.47%~92.18%;遗传差异较小(相似性:0.84~0.90)的2个混栽组合混栽对稻瘟病的控制效果不明显,稻瘟病的防治效果在15.12%~25.54%。此外,品种抗性遗传和株高差异大的品种组合具有显著的增产效果,与品种净栽相比,平均增产539.0~900.0kg/ha,增幅5.57%-10.38%;品种抗性遗传和株高相似的品种组合没有增产效果。 相似文献
13.
Maganti S. Madhav Parikshit Plaha Nagendra K. Singh Tilak R. Sharma 《Journal of Phytopathology》2009,157(5):322-324
Identification of full length genes along with upstream regulatory elements is important to understand its expression. Here, we report preparation of high titre genomic library and identification of a genomic clone containing Pi-k h gene with its complete upstream and downstream sequences from the rice blast resistant line Tetep. Structural analysis of protein revealed that Pi-k h has a central nucleotide binding site domain, leucine-rich repeats domain and a unique zinc-finger domain. Comparative analysis of Pi-k h protein sequence showed 64% and 45% similarity with the protein sequences of rice blast resistance genes Pi-b and Pi-ta , respectively. 相似文献
14.
水稻(Oryza sativa)是世界上最重要的粮食作物, 但稻瘟病和纹枯病等病害严重危害水稻的产量和品质, 给我国乃至全球粮食安全带来巨大威胁。鉴定水稻抗病资源、克隆抗病基因、揭示抗性机理并在育种中加以利用, 对抵御水稻病害和保障粮食安全具有十分重要的作用。准确评价水稻资源的抗病性, 是开展抗病机理研究和育种生产应用的关键环节。该文详述了水稻幼苗期人工喷雾接种、分蘖期和孕穗期田间注射接种与离体叶片戳伤接种的稻瘟病抗性鉴定方法, 以及水稻分蘖期田间接种、孕穗期温室接种和离体茎秆接种的纹枯病抗性鉴定方法, 以期为同行鉴定水稻资源、开展抗病理论和应用研究提供参考。 相似文献
15.
Phinyarat Kongprakhon Alfonso Cuesta‐Marcos Patrick M. Hayes Vipa Hongtrakul Pattama Sirithunya Theerayuth Toojinda Nitsri Sangduen 《Journal of Phytopathology》2010,158(2):125-131
Pyricularia grisea is the most destructive and cosmopolitan fungal pathogen of rice and it can also cause disease on other agriculturally important cereals. We determined the number, location and interaction of quantitative trait loci (QTL) associated with resistance to P. grisea isolates obtained from rice (THL142 and THL222) and barley (TH16 and THL80) grown in Thailand. The isolates showed a spectrum of virulence when used to inoculate a series of differentials. We used a reference blast resistance mapping population of rice (IR64 × Azucena). IR64 was highly resistant, and Azucena was highly susceptible, to all four isolates. The numbers of resistant vs. susceptible progeny suggest that the resistance of IR64 is determined by two or three genes with additive effects. The correlation coefficients for all pairwise comparisons of disease severity were high and highest between barley isolates and between rice isolates. Four QTL were detected, one on each of the following chromosomes 2, 8, 9 and 10. IR64 contributed resistance alleles at three of the QTL (chromosomes 2, 8 and 9). Azucena contributed the resistance allele at the QTL on chromosome 10 in response to inoculation with isolate THL142. The results of the QTL analysis support interpretation of the phenotypic frequency distributions regarding the number of genes determining resistance to the four isolates in this population. Our results are novel in adding blast isolates from barley to the catalogue of pathogen specificities to which a gene, or genes, from IR64 confer resistance. 相似文献
16.
Cheorl-Ho Kim Guo-Wen Zhang Yoshiharu Maruyama Hajime Taniguchi 《Bioscience, biotechnology, and biochemistry》2013,77(10):2767-2768
Cultivar identification of seven Korean domestic rice using DNA markers related to blast resistance was conducted. By PCR analyses using six markers, which we developed in a previous study, and one newly-developed marker for pib, it became possible to differentiate the seven cultivars from each other. This result should contribute not only to cultivar identification but also, to molecular breeding of blast resistance for Korean rice. 相似文献
17.
Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae 总被引:1,自引:0,他引:1
下载免费PDF全文

Houxiang Kang Yue Wang Shasha Peng Yanli Zhang Yinghui Xiao Dan Wang Shaohong Qu Zhiqiang Li Shuangyong Yan Zhilong Wang Wende Liu Yuese Ning Pavel Korniliev Hei Leung Jason Mezey Susan R. McCouch Guo‐Liang Wang 《Molecular Plant Pathology》2016,17(6):959-972
18.
19.
Chuanqin Zheng Nan Jiang Xinhui Zhao Tianze Yan Jun Fu Yanfeng Li Zhongxiu Wu Xiaochun Hu Zhenan Bai Tiangang Liu Gui Xiao Yanbiao Zhou Liangbi Chen Kai Wang Yuanzhu Yang 《Journal of Phytopathology》2020,168(4):211-219
Rice blast, caused by the fungal pathogen Magnaporthe oryzae (M. oryzae), is one of the most destructive and widespread plant diseases in the world. Utilization of resistance genes in rice breeding is considered to be an effective and economical method to control this disease. To identify new sources of blast resistance, a set of 1160 introgression lines (ILs) containing chromosome segments of Chaling common wild rice (Oryza rufipogon Griff.) in the genetic background of an elite indica rice variety 93-11 were developed and phenotyped in the blast nursery. Thirty-three ILs displaying stable blast resistance in three consecutive years were obtained. Among them, one line, IL1043, was subsequently found to be resistant to all of the 28 M. oryzae isolates from different regions through artificial inoculation in greenhouse. By combining bulk segregant analysis coupled with next-generation sequencing (BSA-seq) and recessive class analysis (RCA), a major blast resistance gene in IL1043, designated Picl(t), was mapped on rice chromosome 6 flanked by the markers RM527 and Indel6 with an interval of approximately 925 kb, which covers the Pi2/9 locus. These results will facilitate fine mapping and cloning of Picl(t), and the linked markers will further provide a useful tool for rice blast resistance breeding. 相似文献
20.
Sadegh Ashkani Mohd Rafii Yusop Mahmoodreza Shabanimofrad Abdul Rahim Harun Mahbod Sahebi Mohammad Abdul Latif 《Journal of Phytopathology》2015,163(4):300-309
Blast caused by the fungus Magnaporthae grisea (Herbert) Borr. (anamorphe Pyricularia oryza Cav.) is a serious disease of rice (Oryza sativa L.). One method to overcome this disease is to develop disease resistant cultivars. Due to the genetic plasticity in the pathogen genome, there is a continuous threat to the effectiveness of the developed cultivars. Additional studies of the genetics of resistance, virulence stability and functional genomics are required to accelerate research into understanding the molecular basis of blast disease resistance. In this study, individual plants of the F3 population derived from Pongsu Seribu 2 and Mahsuri were used for pathogenesis assays and inheritance studies of blast resistance. The study was performed with two of the most virulent Malaysian M. grisea pathotypes: P7.2 and P5.0. For blast screening, plants were scored based on the IRRI Standard Evaluation System (SES). F3 populations showed a segregation ratio of 3R:1S for pathotype P7.2, indicating that resistance to this pathotype is likely controlled by a single nuclear gene. Chi‐square analysis showed that the F3 families segregated in a 15R:1S ratio for pathotype P5.0. Therefore, locus interactions or epitasis of blast resistance occur against pathotype P5.0 in the F3 population derived from Pongsu Seribu 2 and Mahsuri. This can be explained by the presence of two independent dominant genes that when present simultaneously, provide resistance to the M. gresia pathotype P5.0. These results indicated that blast resistance in rice is due to the combined effects of multiple loci with major and minor effects. The genetic data generated here will be useful in the breeding of local cultivars for resistance to field blast. The methodology reported here will facilitate the mapping of genes and quantitative trait loci (QTLs) underlying the blast resistance trait. 相似文献