首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic profiling of tissues needs special attention, because the compartmentalization of cellular constituents will be abolished by sample homogenization. This loss of partitioning leads to protein and metabolite instability in extracts, and therefore metabolite extraction protocols need to ensure very rapid inactivation of macromolecules as well as solubilization of metabolites. There are many published methods for tissue metabolome analysis, but no universally accepted standard, and a lack of measurable quality benchmarks. We developed a protocol for efficient tissue disruption and metabolite extraction of the earthworm Lumbricus rubellus guided by prior biological knowledge as well as metrics based on the data. In particular, we identified an unusual degree of instability of L. rubellus tissue extracts, and evaluated different approaches such as heating and filtration to counteract this. Finally, we evaluated four different solvent systems for comprehensive metabolite extraction using three analytical platforms (1H NMR spectroscopy, GC?CMS, and direct-infusion FT-ICR-MS), and also compared bead-beating and cryogenic milling for tissue disruption. Initially we ranked methods by common analytical criteria (e.g. numbers and total intensity of detected peaks) in order to compare protocols. These approaches to assess protocol suitability proved to be inadequate to judge earthworm tissue extraction methods because of sample instability. Existing tissue extraction protocols should not be assumed to be automatically applicable to novel species.  相似文献   

2.
When whole cell extracts are subjected to proton nuclear magnetic resonance spectroscopy (1H NMR), metabolite profiles are generated that contain overlapping signals of the majority of compounds within the extract. In order to determine whether pattern recognition based on the metabolite profiles of higher plants is able to genetically discriminate between plants, we analyzed leaf samples of eight cultivars ofCatharanthus roseus by1H NMR. Hierarchical dendrograms, based on the principal component analysis of the1H NMR total, aliphatic carbohydrate and aromatic region data, revealed possible relationships between the cultivars. The dendrogram based on the aromatic region data was in general agreement with the genetic relationships determined by conventional DNA fingerprinting methods. Secologanin and polyphenols were assigned to the signals of the1H NMR spectra, and contributed most profoundly to the discrimination between cultivars. The overall results indicate that the genetic relationships betweenC. roseus cultivars are reflected in the differences of the aromatic compounds in the leaves.  相似文献   

3.
The development of fast and effective spectroscopic methods that can detect most compounds in an untargeted manner is of increasing interest in plant extracts fingerprinting or profiling projects. Metabolite fingerprinting by nuclear magnetic resonance (NMR) is a fast growing field which is increasingly applied for quality control of herbal products, mostly via 1D 1H NMR coupled to multivariate data analysis. Nevertheless, signal overlap is a common problem in 1H NMR profiles that hinders metabolites identification and results in incomplete data interpretation. Herein, we introduce a novel approach in coupling 2D NMR datasets with principal component analysis (PCA) exemplified for hop resin classification. Heteronuclear multiple bond correlation (HMBC) profile maps of hop resins (Humulus lupulus) were generated for a comparative study of 13 hop cultivars. The method described herein combines reproducible metabolite fingerprints with a minimal sample preparation effort and an experimental time of ca. 28 min per sample, comparable to that of a standard HPLC run. Moreover, HMBC spectra provide not only unequivocal assignment of hop major secondary metabolites, but also allow to identify several isomerization and degradation products of hop bitter acids including the sedative principal of hop (2-methylbut-3-en-2-ol). We do believe that combining 2D NMR datasets to chemometrics, i.e. PCA, has great potential for application in other plant metabolome projects of (commercially relevant) nutraceuticals and or herbal drugs.  相似文献   

4.
Pre-analytical treatments of bacteria are crucial steps in bacterial metabolomics studies. In order to achieve reliable samples that can best represent the global metabolic profile in vivo both qualitatively and quantitatively, many sample treatment procedures have been developed. The use of different methods makes it difficult to compare the results among different groups. In this work, E. coli samples were tested by using NMR spectroscopy. Both liquid N2 and cold methanol quenching procedures reduce the cell membrane integrity and cause metabolites leakage. However, liquid N2 quenching affected the cell viability and the NMR metabolites’ profile less than cold methanol procedure. Samples obtained by metabolite extraction were significantly superior over cell suspensions and cell lysates, with a higher number of detectable metabolites. Methanol/chloroform extraction proved most efficient at extraction of intracellular metabolites from both qualitative and quantitative points of view. Finally, standard operating procedures of bacterial sample treatments for NMR metabolomics study are presented.  相似文献   

5.
Cannabis sativa L. plants produce a diverse array of secondary metabolites. Cannabis cell cultures were treated with jasmonic acid (JA) and pectin as elicitors to evaluate their effect on metabolism from two cell lines using NMR spectroscopy and multivariate data analysis. According to principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA), the chloroform extract of the pectin-treated cultures were more different than control and JA-treated cultures; but in the methanol/water extract the metabolome of the JA-treated cells showed clear differences with control and pectin-treated cultures. Tyrosol, an antioxidant metabolite, was detected in cannabis cell cultures. The tyrosol content increased after eliciting with JA.  相似文献   

6.
A metabolite screening of cyanobacteria was performed by nuclear magnetic resonance (NMR) analysis of the soluble material obtained through sequential extraction of the biomass with three different extractive ability solvents (hexane, ethyl acetate, and methanol). Twenty-five strains from the Coimbra Collection of Algae (ACOI) belonging to different orders in the botanical code that represent three subsections of the Stainer-Rippka classification were used. The 1H NMR spectra of hexane extracts showed that only two strains of Nostoc genus accumulated triacylglycerols. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols were the major components of the ethyl acetate extracts in a mono- to digalactosyldiacylglycerols ratio of 4.5 estimated by integration of the signals at δ 3.99 and 3.94 ppm (sn3 glycerol methylene). Oligosaccharides of sucrose and mycosporine-like amino acids, among other polar metabolites, were detected in the methanolic extracts. Strains of Nostocales order contained heterocyst glycolipids, whereas sulphoquinovosyldiacylglycerols were absent in one of the studied strains (Microchaete tenera ACOI 1451). Phosphathidylglycerol was identified as the major phospholipid in the methanolic extracts together with minor amounts of phosphatidylcholine based on 1H, 31P 2D correlation experiments. Chemotaxonomic information could be easily obtained through the analysis of the δ 3.0–0.5 ppm (fatty acid distribution) and δ 1.2–1.1 ppm (terminal methyl groups of the aglycons in heterocyst glycolipids) regions of the 1H NMR spectra of the ethyl acetate and methanol extracts, respectively.  相似文献   

7.
Metabolite fingerprinting and profiling in plants using NMR   总被引:13,自引:0,他引:13  
Although less sensitive than mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy provides a powerful complementary technique for the identification and quantitative analysis of plant metabolites either in vivo or in tissue extracts. In one approach, metabolite fingerprinting, multivariate analysis of unassigned 1H NMR spectra is used to compare the overall metabolic composition of wild-type, mutant, and transgenic plant material, and to assess the impact of stress conditions on the plant metabolome. Metabolite fingerprinting by NMR is a fast, convenient, and effective tool for discriminating between groups of related samples and it identifies the most important regions of the spectrum for further analysis. In a second approach, metabolite profiling, the 1H NMR spectra of tissue extracts are assigned, a process that typically identifies 20-40 metabolites in an unfractionated extract. These profiles may also be used to compare groups of samples, and significant differences in metabolite concentrations provide the basis for hypotheses on the underlying causes for the observed segregation of the groups. Both approaches generate a metabolic phenotype for a plant, based on a system-wide but incomplete analysis of the plant metabolome. However, a review of the literature suggests that the emphasis so far has been on the accumulation of analytical data and sample classification, and that the potential of 1H NMR spectroscopy as a tool for probing the operation of metabolic networks, or as a functional genomics tool for identifying gene function, is largely untapped.  相似文献   

8.
Cannabis sativa L. plants produce a diverse array of secondary metabolites. Cannabis cell cultures were treated with biotic and abiotic elicitors to evaluate their effect on secondary metabolism. Metabolic profiles analysed by 1H NMR spectroscopy and principal component analysis (PCA) showed variations in some of the metabolite pools. However, no cannabinoids were found in either control or elicited cannabis cell cultures. Tetrahydrocannabinolic acid (THCA) synthase gene expression was monitored during a time course. Results suggest that other components in the signaling pathway can be controlling the cannabinoid pathway.  相似文献   

9.
Environmental metabolomics studies employing earthworms as sentinels for soil contamination are numerous, but the instability of the metabolite extracts from these organisms has been minimally addressed. This study evaluated the efficacy of adding a heat-treatment step in two commonly used extraction protocols (Bligh and Dyer and D2O phosphate buffer) as a pre-analytical stabilization method. The resulting metabolic profiles of Eisenia fetida were assessed using principal component analysis and NMR spectral evaluations. The heated Bligh and Dyer extractions produced stabilized profiles with minimal variation of the extracted metabolomic profiles over time, providing a more suitable method for metabolomic analysis of earthworm extracts.  相似文献   

10.
Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benefit in including an additional washing step in the quenching process, as the results were essentially identical to those obtained just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra- and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P. pastoris.  相似文献   

11.
Whole cell extracts ofArabidopsis cell cultures maintained on various sucrose concentrations (0,3, and 6%) were analyzed by1H NMR spectroscopy to determine the comprehensive metabolic change in these cultures during sucrose starvation. The amount of sucrose, glucose, and fructose in the cells decreased to almost nothing after 12 h of culture in medium without sucrose. In contrast, the total free amino acid content of the cells increased as the culture proceeded. Among the free amino acids, phenylalanine and malic acid increased the most, followed by asparagine and alanine, whereas glutamic acid did not change significantly. These results are in agreement with previous studies using HPLC.1H NMR spectroscopy enabled measurement of changes in the sugar and free amino acid content of whole cell extracts without fractionation and complicated sample preparation. These results indicate that comprehensive metabolic changes in the cells can be determined by a simple, rapid method using whole cell extracts and1H NMR spectroscopy.  相似文献   

12.

Background

A reliable quenching and metabolite extraction method has been developed for Lactobacillus plantarum. The energy charge value was used as a critical indicator for fixation of metabolism.

Results

Four different aqueous quenching solutions, all containing 60% of methanol, were compared for their efficiency. Only the solutions containing either 70 mM HEPES or 0.85% (w/v) ammonium carbonate (pH 5.5) caused less than 10% cell leakage and the energy charge of the quenched cells was high, indicating rapid inactivation of the metabolism. The efficiency of extraction of intracellular metabolites from cell cultures depends on the extraction methods, and is expected to vary between micro-organisms. For L. plantarum, we have compared five different extraction methodologies based on (i) cold methanol, (ii) perchloric acid, (iii) boiling ethanol, (iv) chloroform/methanol (1:1) and (v) chloroform/water (1:1). Quantification of representative intracellular metabolites showed that the best extraction efficiencies were achieved with cold methanol, boiling ethanol and perchloric acid.

Conclusion

The ammonium carbonate solution was selected as the most suitable quenching buffer for metabolomics studies in L. plantarum because (i) leakage is minimal, (ii) the energy charge indicates good fixation of metabolism, and (iii) all components are easily removed during freeze-drying. A modified procedure based on cold methanol extraction combined good extractability with mild extraction conditions and high enzymatic inactivation. These features make the combination of these quenching and extraction protocols very suitable for metabolomics studies with L. plantarum.  相似文献   

13.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

14.
The goal of this study was to examine metabolic differences between a novel chronic myelogenous leukemic (CML) cell line, MyL, and a sub-clone, MyL-R, which displays enhanced resistance to the targeted Bcr-Abl tyrosine kinase inhibitor imatinib. 1H nuclear magnetic resonance (NMR) spectroscopy was carried out on cell extracts and conditioned media from each cell type. Both principal component analysis (PCA) and specific metabolite identification and quantification were used to examine metabolic differences between the cell types. MyL cells showed enhanced glucose removal from the media compared to MyL-R cells with significant differences in production rates of the glycolytic end-products, lactate and alanine. Interestingly, the total intracellular creatine pool (creatine + phosphocreatine) was significantly elevated in MyL-R compared to MyL cells. We further demonstrated that the MyL-R cells converted the creatine to phosphocreatine using non-invasive monitoring of perfused alginate-encapsulated MyL-R and MyL cells by in vivo 31P NMR spectroscopy and subsequent HPLC analysis of extracts. Our data demonstrated a clear difference in the metabolite profiles of drug-resistant and sensitive cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant MyL-R cells.  相似文献   

15.
A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring.  相似文献   

16.
Hairy roots and suspension cell cultures are commonly used in deciphering different problems related to the biochemistry and physiology of plant secondary metabolites. Here, we address about the issue of possible differences in the profiles of flavonoid compounds and their glycoconjugates derived from various plant materials grown in a standard culture media. We compared profiles of flavonoids isolated from seedling roots, hairy roots, and suspension root cell cultures of a model legume plant, Medicago truncatula. The analyses were conducted with plant isolates as well as the media. The LC/MS profiles of target natural products obtained from M. truncatula seedling roots, hairy roots, and suspension root cell cultures differed substantially. The most abundant compounds in seedlings roots were mono- and diglucuronides of isoflavones and/or flavones. This type of glycosylation was not observed in hairy roots or suspension root cell cultures. The only recognized glycoconjugates in the latter samples were glucose derivatives of isoflavones. Application of a high-resolution mass spectrometer helped evaluate the elemental composition of protonated molecules, such as [M + H]+. Comparison of collision-induced dissociation MS/MS spectra registered with a quadrupole time-of-flight analyzer for tissue extracts and standards allowed us to estimate the aglycone structure on the basis of the pseudo-MS3 experiment. Structures of these natural products were described according to the registered mass spectra and literature data. The analyses conducted represent an overview of flavonoids and their conjugates in different types of plant material representing the model legume, M. truncatula.  相似文献   

17.
Commercial preparations of Ginkgo biloba are very complex mixtures prepared from raw leaf extracts by a series of extraction and prepurification steps. The pharmacological activity is attributed to a number of flavonoid glycosides and unique terpene trilactones (TTLs), with largely uncharacterized pharmacological profiles on targets involved in neurological disorders. It is therefore important to complement existing targeted analytical methods for analysis of Ginkgo biloba preparations with alternative technology platforms for their comprehensive and global characterization. In this work, 1H NMR-based metabolomics and hyphenation of high-performance liquid chromatography, photo-diode array detection, mass spectrometry, solid-phase extraction, and nuclear magnetic resonance spectroscopy (HPLC-PDA-MS-SPE-NMR) were used for investigation of 16 commercially available preparations of Ginkgo biloba. The standardized extracts originated from Denmark, Italy, Sweden, and United Kingdom, and the results show that 1H NMR spectra allow simultaneous assessment of the content as well as identity of flavonoid glycosides and TTLs based on a very simple sample-preparation procedure consisting of extraction, evaporation and reconstitution in acetone-d 6. Unexpected or unwanted extract constituents were also easily identified in the 1H NMR spectra, which contrasts traditional methods that depend on UV absorption or MS ionizability and usually require availability of reference standards. Automated integration of 1H NMR spectral segments (buckets or bins of 0.02 ppm width) provides relative distribution plots of TTLs based on their H-12 resonances. The present study shows that 1H NMR-based metabolomics is an attractive method for non-selective and comprehensive analysis of Ginkgo extracts.  相似文献   

18.
In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.  相似文献   

19.
A universal set of equations for determining chlorophyll (Chl) a, accessory Chl b, c, and d, and total Chl have been developed for 90 % acetone, 100 % methanol, and ethanol solvents suitable for estimating Chl in extracts from natural assemblages of algae. The presence of phaeophytin (Ph) a not only interferes with estimates of Chl a but also with Chl b and c determinations. The universal algorithms can hence be misleading if used on natural collections containing large amounts of Ph. The methanol algorithms are severely affected by the presence of Ph and so are not recommended. The algorithms were tested on representative mixtures of Chls prepared from extracts of algae with known Chl composition. The limits of detection (and inherent error, ±95 % confidence limit) for all the Chl equations were less than 0.03 g m−3. The algorithms are both accurate and precise for Chl a and d but less accurate for Chl b and c. With caution the algorithms can be used to calculate a Chl profile of natural assemblages of algae. The relative error of measurements of Chls increases hyperbolically in diluted extracts. For safety reasons, efficient extraction of Chls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of Chls in natural assemblages of aquatic plants.  相似文献   

20.
《Process Biochemistry》2007,42(2):263-266
Metabolomic analysis of extracts of Cheonggukjang was carried out using 1H nuclear magnetic resonance (NMR) spectrometry and principal components analysis (PCA). The major peaks in the 1H NMR spectra of the 50% methanol fraction were assigned to isoleucine/leucine, lactate, alanine, acetic acid, citric acid, choline, fructose, sucrose, tyrosine, phenylalanine and formic acid. The first two principle components (PC1 and PC2) of the 1H NMR spectra of the aqueous fraction allowed discrimination of Cheonggukjang extracts of samples obtained after different periods of fermentation. These two principal components cumulatively accounted for 98.5% of the total variation of all variables. The major peaks within the 1H NMR spectra that contributed to discrimination of different samples were assigned to isoleucine/leucine, lactate, acetic acid, citric acid, choline, fructose, glucose and sucrose. This metabolomic analysis of samples of Cheonggukjang extract demonstrates that NMR and PCA can be used to obtain standard trajectory plots and related information for Cheonggukjang and other fermented foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号