首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Xi    H. Feng    L. Lan    J. Du    J. Wang    Z. Zhang    L. Xue    W. Xu    H. Lin 《Journal of Phytopathology》2007,155(9):570-573
Mixed infections of Nicotiana benthamiana plants by Cucumber mosaic virus (CMV) and Tobacco necrosis virus (TNV) exhibit a synergistic interaction and result in symptom enhancement. Accumulation of CMV(+) RNA as well as capsid protein (CP) in mixed infection was considerably higher than that of singly‐infected plants. There was also a slight increase in TNV(+) RNA and CP levels in doubly infected plants. Synergistic infection by CMV‐ and TNV‐induced higher increase in the levels of malonyldialdehyde, hydrogen peroxide (H2O2) and more decline in the activities of catalase than singly infected ones. Both peroxidase and superoxide dismutase activities increased rapidly for the first 10 days post inoculation (dpi) in doubly‐infected plants and then declined, whereas the enzyme activities continued to increase after 10 dpi in singly infected plants and had higher enzyme activities in the late stages than that of co‐infected plants. These results suggest that synergistic infection by CMV and TNV produced severes oxidative stress in N. benthamiana plants and the synergy between the two viruses was mutual.  相似文献   

2.
Cross‐protection has been used successfully and commercially to control a range of virus diseases for which the selection of suitable mild strains of plant viruses is necessary. Turnip crinkle virus (TCV) is highly pathogenic on Arabidopsis plants and its silencing suppressor‐defective mutant, TCVΔCP, can induce highly localized RNA silencing which is differs from that of other protective strains. We found that TCVΔCP provides some protection against wild‐type TCV but lacks complete protection, and the relative locations of the protective virus and challenge virus affect the degree of cross‐protection. However, similar cross‐protection afforded by TCVΔCP is not observed in Nicotiana benthamiana plants. As expected, TCVΔCP pre‐infected Arabidopsis plants fail to protect against infection with the unrelated Cucumber mosaic virus, strain Fhy. It appears that cross‐protection afforded by TCVΔCP requires that the challenge virus be very similar in sequence, which is a characteristic of RNA silencing. In order to investigate whether the protection is associated with the highly localized RNA silencing, mutant plants involved in key silencing pathway genes of RNA silencing machinery, including dcl2, dcl4 and triple dcl2/dcl3/dcl4 mutants were used. The results demonstrate that cross‐protection afforded by TCVΔCP is dependent on host RNA silencing, and both DCL2 and DCL4 play important roles in this process.  相似文献   

3.
Most plant viruses encode suppressors of RNA silencing (VSRs) to protect themselves from antiviral RNA silencing in host plants. The capsid protein (CP) of Turnip crinkle virus (TCV) is a well-characterized VSR, whereas SUPPRESSOR OF GENE SILENCING 3 (SGS3) is an important plant-encoded component of the RNA silencing pathways. Whether the VSR activity of TCV CP requires it to engage SGS3 in plant cells has yet to be investigated. Here, we report that TCV CP interacts with SGS3 of Arabidopsis in both yeast and plant cells. The interaction was identified with the yeast two-hybrid system, and corroborated with bimolecular fluorescence complementation and intracellular co-localization assays in Nicotiana benthamiana cells. While multiple partial TCV CP fragments could independently interact with SGS3, its hinge domain connecting the surface and protruding domains appears to be essential for this interaction. Conversely, SGS3 enlists its N-terminal domain and the XS rice gene X and SGS3 (XS) domain as the primary CP-interacting sites. Interestingly, SGS3 appears to stimulate TCV accumulation because viral RNA levels of a TCV mutant with low VSR activities decreased in the sgs3 knockout mutants, but increased in the SGS3-overexpressing transgenic plants. Transgenic Arabidopsis plants overexpressing TCV CP exhibited developmental abnormalities that resembled sgs3 knockout mutants and caused similar defects in the biogenesis of trans-acting small interfering RNAs. Our data suggest that TCV CP interacts with multiple RNA silencing pathway components that include SGS3, as well as previously reported DRB4 (dsRNA-binding protein 4) and AGO2 (ARGONAUTE protein 2), to achieve efficient suppression of RNA silencing-mediated antiviral defence.  相似文献   

4.
Two transgenic lines, of Nicotiana benthamiana expressing Turnip crinkle virus (TCV)-coat protein (CP) gene with contrasting phenotype, the highest (#3) and the lowest (#18) CP expressers, were selected and challenged with the homologous TCV. The former, the highest expresser, showed nearly five times more CP expression than the latter. Progenies of #3 and #18 lines showed 30 and 100% infection rates, respectively. The infected progenies of #3 line showed mild and delayed symptom with TCV. This is a coat protein-mediated resistance (CP-MR), and its resistance level is directly proportional to CP transgene expression. However, CP-MR of the transgenic plants was specific only for TCV but not for heterologous viruses. Newly growing leaves of those infected progenies of #3 line did not show any visible symptoms at 4-week post-inoculation (wpi) with TCV, suggesting a reversal from infection. This was confirmed by RT-PCR analysis with the disappearance of the target at 4 wpi. This is a case of RNA-mediated resistance, and a threshold level of transgene expression may be needed to achieve the silent state. To confirm the RNA silencing, we infiltrated Agrobacterium carrying TCV-CP into leaves of progenies of #3 and performed RT-PCR analysis. The results indicate that TCV-CP’s suppressor activity against RNA silencing itself can be silenced by the homologous expression of TCV-CP in the transgenic plants. The transgenic plants containing TCV-CP seem to be a model system to study viral protection mediated by a combination of protein and RNA silencing. Ayyappan Vasudevan and Tae-Kyun Oh have contributed equally in this study.  相似文献   

5.
The accumulation of heat shock protein 70 (Hsp70) generally occurs in plants infected with viruses. However, the effect of Hsp70 accumulation on plant viral infection and pathogenesis remains elusive. In this study, the expression of six Hsp70 genes was found to be induced by the four diverse RNA viruses, Tobacco mosaic virus, Potato virus X (PVX), Cucumber mosaic virus and Watermelon mosaic virus, in Nicotiana benthamiana. Heat treatment enhanced the accumulation and systemic infection of these viruses. Similar results were obtained for viral infection in plants heterologously expressing an Arabidopsis cytoplasmic Hsp70 through either a PVX vector or Agrobacterium infiltration. In contrast, viral infection was compromised in cytoplasmic NbHsp70c‐1 gene‐silenced plants. These data demonstrate that the cytoplasmic Hsp70s can enhance the infection of N. benthamiana by diverse viruses.  相似文献   

6.
7.
It has been hypothesized that plants can get beneficial trade‐offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus‐induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought‐tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus‐infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid‐independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non‐infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.  相似文献   

8.
Nicotiana benthamiana can be doubly infected with either potato virus Y or tobacco etch virus and sorghum chlorotic spot virus (SCSV). Immunogold labeling showed that cylindrical inclusions of either potyvirus bind virions of the unrelated rod-shaped furovirus SCSV. Not all cells in doubly infected N. benthamiana plants contained both viruses. In cells infected by the potyviruses but not by SCSV, cylindrical inclusions did not label with the antiserum to SCSV. Numbers of cells infected with SCSV did not increase in doubly infected plants compared to those in plants infected with SCSV alone. Systemic infection of N. benthamiana by either potyvirus was not prevented by SCSV infections. This provides further evidence that unrelated rod-shaped viruses can bind to potyvirus cylindrical inclusion bodies, and that this phenomenon is not limited to graminaceous hosts.  相似文献   

9.
10.
Heat shock proteins 70 (HSP70s) are a highly conserved family of genes in eukaryotes, and are involved in a remarkable variety of cellular processes. In many plant positive‐stranded RNA viruses, HSP70 participates in the construction of a viral replication complex and plays various roles during viral infection. Here, we found increased expression of HSP70 following infection by Rice stripe virus (RSV), a negative‐stranded RNA virus, in both rice (the natural host) and Nicotiana benthamiana (an experimental host). Heat treatment of N. benthamiana (Nb) plants enhanced viral infection, whereas RSV infection was retarded and viral RNAs accumulated at a low level when HSP70 was silenced. In both bimolecular fluorescence complement and in vitro pull‐down assays, the N‐terminus of RSV RNA‐dependent RNA polymerase (RdRp) interacted and co‐localized with the HSP70s of both plants (OsHSP70 and NbHSP70). The localization of the N‐terminus of RdRp when expressed alone was not obviously different from when it was co‐expressed with OsHSP or NbHSP, and vice versa. RSV infection also had no effect on the localization of host HSP70. These results demonstrate that host HSP70 is necessary for RSV infection and probably plays a role in viral replication by interacting with viral RdRp, which provides the first evidence of an interacting host protein related to RSV replication, which has been little studied to date.  相似文献   

11.
The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.  相似文献   

12.
An up‐regulated gene derived from Bamboo mosaic virus (BaMV)‐infected Nicotiana benthamiana plants was cloned and characterized in this study. BaMV is a single‐stranded, positive‐sense RNA virus. This gene product, designated as NbTRXh2, was matched with sequences of thioredoxin h proteins, a group of small proteins with a conserved active‐site motif WCXPC conferring disulfide reductase activity. To examine how NbTRXh2 is involved in the infection cycle of BaMV, we used the virus‐induced gene silencing technique to knock down NbTRXh2 expression in N. benthamiana and inoculated the plants with BaMV. We observed that, compared with control plants, BaMV coat protein accumulation increased in knockdown plants at 5 days post‐inoculation (dpi). Furthermore, BaMV coat protein accumulation did not differ significantly between NbTRXh2‐knockdown and control protoplasts at 24 hpi. The BaMV infection foci in NbTRXh2‐knockdown plants were larger than those in control plants. In addition, BaMV coat protein accumulation decreased when NbTRXh2 was transiently expressed in plants. These results suggest that NbTRXh2 plays a role in restricting BaMV accumulation. Moreover, confocal microscopy results showed that NbTRXh2‐OFP (NbTRXh2 fused with orange fluorescent protein) localized at the plasma membrane, similar to AtTRXh9, a homologue in Arabidopsis. The expression of the mutant that did not target the substrates failed to reduce BaMV accumulation. Co‐immunoprecipitation experiments revealed that the viral movement protein TGBp2 could be the target of NbTRXh2. Overall, the functional role of NbTRXh2 in reducing the disulfide bonds of targeting factors, encoded either by the host or virus (TGBp2), is crucial in restricting BaMV movement.  相似文献   

13.
After evaluation of the responses of bean and broad bean common cultivars against an isolate of Cucumber mosaic virus (CMV-K) and Bean yellow mosaic virus (BYMV-K), interaction of isolates was statistically studied on co-infected plants of bean cv. Bountiful and broad bean cv. Lahijan at two trials. Based on viral relative concentration determined by quantitative enzyme-linked immunosorbent assay, BYMV interacts synergistically with CMV in bean at 14 days post inoculation, while in co-infection with BYMV, CMV interacts antagonistically in both host plants at least in one of the two trials. This suggests that CMV/BYMV interaction is dependent on host species and developmental stage of plant. Co-infection like single infection with CMV in bean plants led to significantly decrease in plants’ height and fresh weight than BYMV singly infected and healthy plants, while viral infection of broad bean plants did not significantly affect growth parameters. Decline effect of viral infection (especially co-infection) on chlorophyll and carotenoids value of bean plants was greater than those of broad bean. Viral infection (singly or doubly) caused irregular changes in nutrient elements values of both hosts compared with healthy ones.  相似文献   

14.
15.
Complementary (c)DNA clones corresponding to the full-length genome of T36CA (a Californian isolate of Citrus tristeza virus with the T36 genotype), which shares 99.1% identity with that of T36FL (a T36 isolate from Florida), were made into a vector system to express the green fluorescent protein (GFP). Agroinfiltration of two prototype T36CA-based vectors (pT36CA) to Nicotiana benthamiana plants resulted in local but not systemic GFP expression/viral infection. This contrasted with agroinfiltration of the T36FL-based vector (pT36FL), which resulted in both local and systemic GFP expression/viral infection. A prototype T36CA systemically infected RNA silencing-defective N. benthamiana lines, demonstrating that a genetic basis for its defective systemic infection was RNA silencing. We evaluated the in planta bioactivity of chimeric pT36CA-pT36FL constructs and the results suggested that nucleotide variants in several open reading frames of the prototype T36CA could be responsible for its defective systemic infection. A single amino acid substitution in each of two silencing suppressors, p20 (S107G) and p25 (G36D), of prototype T36CA facilitated its systemic infectivity in N. benthamiana (albeit with reduced titre relative to that of T36FL) but not in Citrus macrophylla plants. Enhanced virus accumulation and, remarkably, robust systemic infection of T36CA in N. benthamiana and C. macrophylla plants, respectively, required two additional amino acid substitutions engineered in p65 (N118S and S158L), a putative closterovirus movement protein. The availability of pT36CA provides a unique opportunity for comparative analysis to identify viral coding and noncoding nucleotides or sequences involved in functions that are vital for in planta infection.  相似文献   

16.
Tomato apex necrosis virus (ToANV, species Tomato marchitez virus, genus Torradovirus, family Secoviridae) causes a severe tomato disease in Mexico. One distinctive feature of torradoviruses compared with other members of the family Secoviridae is the presence of an additional open reading frame (ORF) in genomic RNA2 (denominated RNA2‐ORF1), located upstream of ORF2. RNA2‐ORF2 encodes a polyprotein that is processed into a putative movement protein and three capsid proteins (CPs). The RNA2‐ORF1 protein has homologues only amongst other torradoviruses and, so far, no function has been associated with it. We used recombinant and mutant ToANV clones to investigate the role of the RNA2‐ORF1 protein in various aspects of the virus infection cycle. The lack of a functional RNA2‐ORF1 resulted in an inability to systemically infect Nicotiana benthamiana and tomato plants, but both positive‐ and negative‐strand RNA1 and RNA2 accumulated locally in agroinfiltrated areas in N. benthamiana plants, indicating that the RNA2‐ORF1 mutants were replication competent. Furthermore, a mutant with a deletion in RNA2‐ORF1 was competent for virion formation and cell‐to‐cell movement in the cells immediately surrounding the initial infection site. However, immunological detection of the ToANV CPs in the agroinfiltrated areas showed that this mutant was not detected in the sieve elements even if the surrounding parenchymatic cells were ToANV positive, suggesting a role for the RNA2‐ORF1 protein in processes occurring prior to phloem uploading, including efficient spread in inoculated leaves.  相似文献   

17.
18.
19.
Using enzyme‐linked immunosorbent assays, the frequency of occurrence of six viruses was determined in Brassica rapa ssp. sylvestris collected from two Thameside sites (Abingdon and Culham) in Oxfordshire and one near the Avon (Claverton) in Bath & North East Somerset. During 2000–2001, the viruses detected were: Beet western yellows virus (genus Polerovirus) (BWYV), Cauliflower mosaic virus (genus Caulimovirus) (CaMV), Turnip crinkle virus (genus Carmovirus) (TCV), Turnip rosette virus (genus Sobemovirus) (TRoV), and Turnip yellow mosaic virus (genus Tymovirus) (TYMV). BWYV and TYMV were the most frequently detected viruses at the Oxford shire sites, both as single infections (20/1743 and 66/1743 respectively) and as dual infections (7/1743). Turnip mosaic virus (genus Potyvirus) (TuMV) was not detected in the field‐grown plants assayed from any of the sites. There was a highly significant (x2[1]=30.07, P<0.001) difference in the proportion of plants at each Oxfordshire site in which one or more viruses were detected, and essentially the same pattern of virus infection was observed in tests on B. rapa from the site near Claverton. At least one representative isolate of each detected virus was tested for its morphological and serological effects on glasshouse‐grown individuals from different half‐sib families of B. rapa from both Oxfordshire sites. Except for TRoV, where there was a large difference in the frequency of successful infection in B. rapa from the two locations (1/15 vs 11/15), no clear evidence of resistance or immunity to challenge was observed, although tolerance (virus invasion without symptoms) was frequent. Fewer of the plants from Abingdon were infected than those from Culham, when mechanically challenged with TRoV, but the two B. rapa populations were not otherwise consistently different, either in their infectibility by this virus or in their responses to challenge. However, with TCV, viral antigen concentration was closely linked to the severity of disease and the B. rapa from both Oxfordshire sites segregated into two classes: those with symptoms and most viral antigen, and those without symptoms and least viral antigen. These results suggest that generic risk assessments cannot be made due to differences in the way distinct B. rapa populations react to virus challenge.  相似文献   

20.
The perception of pathogen‐associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP‐triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号