首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although the intracellular bacterium Wolbachia is ubiquitous in insects, it has a unique relationship with New World ants on which particular bacterial strains have specialized. However, data are from distantly related hosts and detailed phylogenetic information which could reveal transmission dynamics are lacking. Here, we investigate host–Wolbachia relationships in the monophyletic fungus‐growing ant tribe Attini, screening 23 species and using multilocus sequence typing to reliably identify Wolbachia strains. This technique reduces the significant problem of recombination seen using traditional single gene techniques. The relationship between Wolbachia and the fungus‐growing ants appears complex and dynamic. There is evidence of co‐cladogenesis, supporting vertical transmission; however, this is incomplete, demonstrating that horizontal transmission has also occurred. Importantly, the infection prevalence is frequently different between closely related taxa, with the Acromyrmex leaf‐cutting ants appearing particularly prone to infection and there being no consistent relationship with any of the major life history transitions. We suggest that infection loss and horizontal transmission have driven epidemics or selective sweeps of Wolbachia, resulting in multiple gains and losses of infection across the fungus‐growing ants.  相似文献   

2.
【目的】Wolbachia 是一种广泛存在于节肢动物中的胞内共生细菌,影响寄主的生物学特性。花蓟马 Frankliniella intonsa (Trybom)是重要的害虫,对农作物及园林植物造成危害。本研究旨在明确 Wolbachia 在花蓟马中的感染情况,并分析其与寄主线粒体DNA多样性的关系。【方法】采集中国境内26个花蓟马自然种群,运用多位点序列分型技术(multilocus sequence typing, MLST)对其体内 Wolbachia 感染率及株系进行分析;利用线粒体 COI 分子标记研究花蓟马的遗传分化及遗传多样性;通过比较感染和未感染 Wolbachia 个体 COI 数据,探究 Wolbachia 多样性与寄主线粒体DNA多样性之间的关系。【结果】花蓟马中 Wolbachia 的感染率为0%~60%,共检测到5种 Wolbachia 株系(wFint1,wFint2,wFint3,wFint4及wFint5),均属于B大组且形成一个单系群。Wolbachia感染情况与这些花蓟马种群(除CC, GZ, TA和TY, N<5)的线粒体DNA多样性相关,表现为不感染 Wolbachia 的种群中线粒体DNA单倍型多样性(Hd)与核苷酸多样性(Pi)均高于感染 Wolbachia 的种群,且 Wolbachia 感染率与 Hd 呈显著负相关( P <0.05)。AMOVA分析表明花蓟马线粒体DNA遗传分化与Wolbachia 感染情况有关。【结论】 Wolbachia 可能在侵染花蓟马种群后出现遗传分化;Wolbachia 感染与寄主线粒体DNA多样性有关。  相似文献   

3.
Wolbachia在山楂双叶螨中的感染及对寄主生殖的影响   总被引:1,自引:0,他引:1  
张艳凯  孙兵  洪晓月 《昆虫学报》2014,57(8):914-920
【目的】共生菌Wolbachia在多种叶螨寄主中引起细胞质不亲和及适合度改变,影响寄主的生物学特性。山楂双叶螨Amphitetranychus viennensis是重要的果树害螨,常暴发成灾。本研究旨在明确Wolbachia在山楂双叶螨中的感染情况及对寄主生殖的影响。【方法】采集自然种群的山楂双叶螨,运用多位点序列分型技术(multilocus sequence typing, MLST)对其体内Wolbachia感染率及株系进行分析;通过杂交试验及生物学观察,分析感染Wolbachia对山楂双叶螨单雌产卵量、后代孵化率、性比及死亡率的影响。【结果】山楂双叶螨自然种群感染一种株系的Wolbachia (wVie),该Wolbachia株系与小黑花椿象Orius strigicollis和丽蝇蛹集金小蜂Nasonia vitripennis中的Wolbachia株系亲缘关系较近,而与叶螨属Tetranychus叶螨感染的Wolbachia株系亲缘关系较远。Wolbachia与4种分化较小的线粒体单倍型相关联。Wolbachia感染雌虫与不感染雌虫产卵量没有显著差异(P>0.05)。不感染雌虫与感染雄虫交配,卵孵化率显著低于其他杂交组合 (P<0.05),但孵化率仍达近75%。各交配组合的后代性比及死亡率变化不明显(P>0.05)。【结论】Wolbachia在山楂双叶螨种群中的侵染历史较短,对山楂双叶螨的产卵力、后代性比、死亡率没有影响。Wolbachia在山楂双叶螨中诱导产生弱的CI表型。  相似文献   

4.
Wolbachia are maternally inherited bacteria that infect a large number of insects and are responsible for different reproductive alterations of their hosts. One of the key features of Wolbachia biology is its ability to move within and between host species, which contributes to the impressive diversity and range of infected hosts. Using multiple Wolbachia genes, including five developed for Multi-Locus Sequence Typing (MLST), the diversity and modes of movement of Wolbachia within the wasp genus Nasonia were investigated. Eleven different Wolbachia were found in the four species of Nasonia , including five newly identified infections. Five infections were acquired by horizontal transmission from other insect taxa, three have been acquired by hybridization between two Nasonia species, which resulted in a mitochondrial- Wolbachia sweep from one species to the other, and at least three have codiverged during speciation of their hosts. The results show that a variety of transfer mechanisms of Wolbachia are possible even within a single host genus. Codivergence of Wolbachia and their hosts is uncommon and provides a rare opportunity to investigate long-term Wolbachia evolution within a host lineage. Using synonymous divergence among codiverging infections and host nuclear genes, we estimate Wolbachia mutation rates to be approximately one-third that of the nuclear genome.  相似文献   

5.
It has been postulated that parthenogenesis in weevil species is of hybrid origin, but some have speculated that Wolbachia infection plays a role through the modification of host breeding systems. Here we focus on Strophosoma weevils, which are known to be pests in young forest stands. Using molecular data, we investigated the diversity of the two most common Strophosoma species in Europe: S. capitatum, which reproduces bisexually, and S. melanogrammum, which is parthenogenetic. Also researched were their associations with the endosymbiotic bacterium Wolbachia. These species of weevil were found to be clearly distinguishable based on their mitochondrial DNA, with the bisexual taxa being more diverse. However, the nuclear DNA divergence of the two species was very low, and the parthenogenetic taxon was found to be heterozygous. Wolbachia infection was detected in all individuals of the S. melanogrammum populations and less than half of the S. capitatum populations. Moreover, multiple Wolbachia strains were found in both taxa (two in the former and three in the latter). The results of this research suggest that parthenogenesis in this genus is of hybrid origin and that Wolbachia could have played a role in speciation of these weevils.  相似文献   

6.
Rhagoletis pomonella Walsh (Diptera: Tephritidae) is a model species for sympatric speciation through host race formation on apple and hawthorn. The bacterial endosymbiont Wolbachia, a manipulator of arthropod reproduction, has been considered to contribute to speciation in several species. A potential role of Wolbachia in sympatric speciation of R. pomonella remains to be tested despite an earlier detection by PCR. In this study, we isolated Wolbachia from R. pomonella individuals from both host species using multi‐locus sequence typing (MLST) and the surface protein wsp. By cloning and sequencing of 311 plasmids, we found sequence types of at least four wPom strains. A complete MLST profile was obtained only for wPom1, whereas MLST loci of the other putative strains were difficult to assign because of multiple infections and low sample numbers. wPom1 occurs in both host races, whereas different sequence types were found at low frequencies only in apple‐infesting R. pomonella. This warrants further investigation as it cannot be excluded that Wolbachia plays a part in this model of sympatric speciation.  相似文献   

7.
1. Complete feminisation of genetic males into functional females, a unique case among insects, is known in Eurema mandarina (former Eurema hecabe Y type) that are infected with two strains of Wolbachia, wCIEm and wFemEm. 2. Here, we newly found that a proportion of wild‐caught E. hecabe (former E. hecabe B type) produced only female offspring. Cytogenetic observations indicated that individuals of E. hecabe displaying the all‐female trait were genetically male (i.e. feminisation). 3. Multilocus sequence typing analyses demonstrated that the feminised individuals of E. hecabe were infected with two Wolbachia strains, wCIEh and wFemEh, that were indistinguishable from wCIEm and wFemEm, respectively. 4. Even identical strains of Wolbachia can be regulated differently depending on the host genetic background. Therefore, we compared the infection densities and vertical transmission efficiencies of Wolbachia between feminised E. mandarina and E. hecabe, but detected no significant differences in these traits. 5. The possible routes by which the two Wolbachia strains have transferred between E. mandarina and E. hecabe are discussed.  相似文献   

8.
The spread of maternally inherited microorganisms, such as Wolbachia bacteria, can induce indirect selective sweeps on host mitochondria, to which they are linked within the cytoplasm. The resulting reduction in effective population size might lead to smaller mitochondrial diversity and reduced efficiency of natural selection. While documented in several host species, it is currently unclear if such a scenario is common enough to globally impact the diversity and evolution of mitochondria in Wolbachia‐infected lineages. Here, we address this question using a mapping of Wolbachia acquisition/extinction events on a large mitochondrial DNA tree, including over 1000 species. Our analyses indicate that on a large phylogenetic scale, other sources of variation, such as mutation rates, tend to hide the effects of Wolbachia. However, paired comparisons between closely related infected and uninfected taxa reveal that Wolbachia is associated with a twofold reduction in silent mitochondrial polymorphism, and a 13% increase in nonsynonymous substitution rates. These findings validate the conjecture that the widespread distribution of Wolbachia infections throughout arthropods impacts the effective population size of mitochondria. These effects might in part explain the disconnection between genetic diversity and demographic population size in mitochondria, and also fuel red‐queen‐like cytonuclear co‐evolution through the fixation of deleterious mitochondrial alleles.  相似文献   

9.
The endosymbiont Wolbachia has been detected in a few parthenogenetic collembolans sampled in Europe and America, including three species of Poduromorpha, two species of Entomobryomorpha, and two species of Neelipleona. Based on 16S rRNA and ftsZ gene sequences, most of the Wolbachia infecting parthenogenetic collembolans were characterized as members of supergroup E and showed concordant phylogeny with their hosts. However, the two neelipleonan symbionts form another unique group, indicating that Wolbachia has infected parthenogenetic collembolans multiple times. In this study, five parthenogenetic collembolan species were identified as hosts of Wolbachia, and four new Wolbachia strains were reported for four collembolan species sampled in China, respectively, including a neelipleonan strain from Megalothorax incertus (wMinc). Our results demonstrated that the Wolbachia multilocus sequence typing (MLST) system is superior to the 16S rRNA + ftsZ approach for phylogenetic analyses of collembolan Wolbachia. The MLST system assigned these Wolbachia of parthenogenetic collembolans to supergroup E as a unique clade, which included wMinc, supporting the monophyletic origin of Wolbachia in parthenogenetic collembolan species. Moreover, our data suggested supergroup E as one of the most divergent lineages in Wolbachia and revealed the discrepancy between the phylogenies of Wolbachia from parthenogenetic collembolans and their hosts, which may result from the high level of genetic divergence between collembolan Wolbachia, in association with the geographic differentiation of their hosts, or the possible horizontal transmission of Wolbachia between different collembolan species.  相似文献   

10.
In a recent Perspective, Stahlhut et al. (2012) argued that potential Wolbachia-induced effects on inheritance patterns of mitochondrial DNA do not significantly affect DNA barcoding efforts. Since this hypothesis can be readily tested, we suggest to do so by including multiple, nuclear markers in DNA barcoding studies.  相似文献   

11.
【目的】对苹果蠹蛾Cydia pomonella L.体内共生菌Wolbachia进行分子生物学鉴定,确定该虫体内Wolbachia的进化位置,为进一步探讨Wolbachia对其生殖作用的调控机制提供理论依据。【方法】应用Wolbachia的wsp基因特异引物,通过PCR扩增法检测了苹果蠹蛾10个地理种群(新疆伊犁、吐鲁番、和田、石河子、奎屯、哈密、库尔勒、阿拉尔、喀什、和甘肃张掖)感染Wolbachia的状况,并对阿拉尔种群体内的Wolbachia的wsp基因进行测序和序列分析。【结果】苹果蠹蛾10个地理种群全部感染了tWolbachia,利用wsp基因的特异性引物从阿拉尔种群体内扩增出了617 bp的Wolbachia的wsp基因片段(GenBank登录号为KC832324),系统发育分析结果表明,苹果蠹蛾体内感染的Wolbachia属于A群Dor亚群,与锤角细蜂亲缘关系较近。【结论】苹果蠹蛾体内普遍感染了Wolbachia,属于A群Dor亚群。  相似文献   

12.
Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont‐mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis‐inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission.  相似文献   

13.
《Fly》2013,7(4):273-283
Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages.  相似文献   

14.
Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages.  相似文献   

15.
Enterocytozoon bieneusi is an important opportunistic pathogen widely distributed in humans and animals that causes diarrhea or fatal diarrhea in immunocompromised hosts. To examine the infection status and molecular characteristics of E. bieneusi in pigs, 725 fecal samples were collected from pigs in six areas of Fujian Province. The E. bieneusi genotypes were identified based on the internal transcribed spacer (ITS) regions of the ribosomal RNA (rRNA) gene by nested PCR, and its population genetics were analyzed by multilocus sequence typing (MLST). The results showed that the infection rate of E. bieneusi was 24.4% (177/725), and 11 known genotypes (EbpC, EbpA, CHN‐RR2, KIN‐1, CHG7, CHS5, CM11, CHG23, G, PigEBITS, and D) and 2 novel genotypes (FJF and FJS) were identified. All the genotypes were found to be clustered into zoonotic Group 1. Moreover, 52 positive samples were successfully amplified at minisatellite and microsatellite loci and formed 48 distinct multilocus genotypes (MLGs). Further population structure analyses showed strong genetic linkage disequilibrium (LD) and several recombination events (Rm), indicating that E. bieneusi has a clonal population structure. This study is the first to investigate the prevalence and molecular characteristics of E. bieneusi in Fujian Province and could provide baseline data to control E. bieneusi infection in pigs and humans and deepen our understanding of the zoonotic risk of E. bieneusi and its distribution in China.  相似文献   

16.
Previous classification of Xanthomonas campestris has defined six pathovars (aberrans, armoraciae, barbareae, campestris, incanae, and raphani) that cause diseases on cruciferous plants. However, pathogenicity assays with a range of strains and different hosts identifies only three types of symptom: black rot, leaf spot and bacterial blight. These findings raise the question of the genetic relatedness between strains assigned to different pathovars or symptom phenotypes. Here we have addressed this issue by multilocus sequence analysis of 42 strains. The X. campestris species was polymorphic at the 8 loci analysed and had a high genetic diversity; 23 sequence types were identified of which 16 were unique. All strains that induce black rot (pathovars aberrans and campestris) were genetically close but split in two groups. Only three clonal complexes were found, all within pathovar campestris. The assignment of the genome-sequenced strain 756C to pathovar raphani suggested from disease symptoms was confirmed, although this group of strains was particularly polymorphic. Strains belonging to pathovars barbareae and incanae were closely related, but distinct from pathovar campestris. There is evidence of genetic exchanges of housekeeping genes within this species as deduced from a clear incongruence between individual gene phylogenies and from network structures from SplitsTree analysis. Overall this study showed that the high genetic diversity derived equally from recombination and point mutation accumulation. However, X. campestris remains a species with a clonal evolution driven by a differential adaptation to cruciferous hosts.  相似文献   

17.
18.
Genetic traits of five Rickettsia prowazekii isolates, including the first from Africa and North America, and representatives from human and flying squirrels were compared using multilocus sequence typing. Four rickettsial genes encoding 17 kDa genus-common antigen (17 kDa gene), citrate synthase (gltA), OmpB immunodominant antigen (ompB) and 120 kDa cytoplasmic antigen (sca4) were examined. Sequence identities of 17 kDa gene and gltA were 100% among the isolates. Limited sequence diversity of ompB (0.02-0.11%) and sca4 (0.03-0.20%) was enough to distinguish the isolates, and evaluation of the combined four genes provided a method to easily differentiate R. prowazekii from other rickettsiae.  相似文献   

19.
【目的】2株炭疽芽胞杆菌(Bacillus anthracis)17003-14和17003-32的多位点序列分型(Multilocussequence typing,MLST)研究。【方法】选取B.anthracis基因组7个常见管家基因位点glpF、gmk、ilvD、pta、pur、pycA和tpi进行PCR扩增、测序,与MLST数据库中的等位基因序列进行比对,确定菌株的序列型(sequence type,ST)。【结果】B.anthracis 17003-14和17003-32的等位基因编号分别为113、31、1、43、1、53、7和113、31、1、43、1、53、37,比对结果显示这2株细菌的等位基因编号组合未见报道。【结论】17003-14和17003-32为新ST菌株,已被MLST数据库确认,注册号(pubMLST id)分别为id-1053和id-1054。  相似文献   

20.
《Journal of Asia》2021,24(3):940-947
Wolbachia are maternally inherited endosymbiotic bacteria. These intracellular bacteria are common in arthropods and could manipulate host reproduction in diverse ways, such as feminization, parthenogenesis, male killing and cytoplasmic incompatibility. In spiders, infection by Wolbachia has been found in a total of 99 species belonging to 62 genera and 17 families. Furthermore, recent studies analyzed the phylogeny of Wolbachia in Hylyphantes graminicola, 2 cave spiders and Agelenopsis species using multilocus sequence typing (MLST) approach. However, the diversity of Wolbachia strains determined by MLST in spiders from China is still largely unknown.In this study, we collected 1153 spider individuals from Mangshan in China and screened for Wolbachia in 975 individuals representing 68 spider species belonging to 45 genera of 16 families. We analyzed the phylogenetic relationship between Wolbachia and their host spiders by MLST approach. We found novel infections of Wolbachia in 1 family, 9 genera and 20 species of spiders. We found 13 new Wolbachia strains and suggest that group A is more common than group B in Wolbachia that infect spiders. Our results revealed three recombination events of the concatenated multilocus sequences in Wolbachia that infect spiders. Furthermore, our results demonstrated the phylogenetic incongruence between Wolbachia and spiders, suggesting the horizontal transmission of Wolbachia in spiders.We suggest that recombination and horizontal transmission may play an important role in the diversity and evolution of Wolbachia in spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号