首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We have characterized the constitutive and stress‐inducible pattern of immunoglobulin‐binding protein (BiP) gene expression during Xenopus early development. Whole mount in situ hybridization analysis revealed that BiP mRNA was detected in unfertilized eggs, cleavage and blastula stage embryos. In gastrulae, BiP mRNA was present across the surface of the embryo, while in neurulae BiP mRNA was enriched in the neural plate, neural fold, and around the blastopore. In early and late tailbud embryos, BiP mRNA was found primarily in the dorsal region. Tunicamycin and A23187, the calcium ionophore, enhanced BiP mRNA accumulation first at the neurula stage, while heat shock induced BiP mRNA accumulation first at the gastrula stage. Compared to control, A23187‐ and heat shock‐treated neurulae displayed relatively high levels of BiP mRNA in selected tissues, including the neural plate, neural folds, around the blastopore, and ectoderm. At the early tailbud stage, A23187 and heat shock enhanced BiP mRNA accumulation primarily in the head, somites, tail, and along the spinal cord. A similar situation was found with A23187‐ and heat shock‐treated late tailbud embryos, except that heat‐shocked embryos also displayed enhanced BiP mRNA accumulation in the epidermis. These studies demonstrate a preferential accumulation of BiP mRNA in selected tissues during development and in response to stress. Dev. Genet. 25:31–39, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
Antifolates can impair the synthesis and/or function of folates in living organisms. Mechanisms of resistance or tolerance to antifolates have been mainly described in plants using the drug methotrexate. In this work, the antifolate trimethoprim (TMP) was used with the aim of revealing a novel mechanism of resistance. EMS mutagenised seeds from Arabidopsis were screened to isolate individuals insensitive to TMP. Genetic analysis revealed a homozygous recessive mutation that segregates with the phenotype of tolerance to 50 μm TMP. Mapping analysis localised the mutation at the end of the short arm of chromosome 3. Preliminary characterisation demonstrated up‐regulation of several genes from the folate biosynthetic pathway in the TMP insensitive mutant, and a slight increase in total folate content in the mutant as compared with the Col‐0 control. Moreover, sequence analysis of the DHFR (dihydrofolate reductase) genes, which encode a known target for resistance to antifolates, did not reveal any changes. This study is the first report of a stable mutant insensitive (afi1) to the antifolate trimethoprim in plants, and suggests the existence of a novel mechanism of resistance to antifolates.  相似文献   

13.
14.
Early life stress (ELS) programs the developing organism and influences the development of brain and behavior. We tested the hypothesis that ELS‐induced histone acetylations might alter the expression of synaptic plasticity genes that are critically involved in the establishment of limbic brain circuits. Maternal separation (MS) from postnatal day 14–16 was applied as ELS and two immediate early genes underlying experience‐induced synaptic plasticity, Arc and early growth response 1 (Egr1) were analyzed. We show here that repeated ELS induces a rapid increase of Arc and Egr1 in the mouse hippocampus. Furthermore, immunoblotting revealed that these changes are paralleled by histone modifications, reflected by increased acetylation levels of H3 and H4. Most importantly, using native Chromatin immunoprecipitation quantitative PCR (nChIP‐qPCR), we show for the first time a correlation between elevated histone acetylation and increased Arc and Egr1 expression in response to ELS. These rapid epigenetic changes are paralleled by increases of dendritic complexity and spine number of hippocampal CA3 pyramidal neurons in ELS animals at weaning age. Our results are in line with our working hypothesis that ELS induces activation of synaptic plasticity genes, mediated by epigenetic mechanisms. These events are assumed to represent early steps in the adaption of neuronal networks to a stressful environment.  相似文献   

15.
《Reproductive biology》2020,20(4):520-524
The ubiquitin proteins play important role in proteasomal degradation and their balanced action is essential for the crucial process of spermatogenesis. The disruption of various ubiquitinating proteins in mice revealed defective spermatogenesis, thus inferring their important function in spermatogenesis. However, the role of some testis-specific ubiquitinating proteins still needs to be discovered. This study was planned to study the in vivo function of testis-specific and evolutionarily conserved ubiquitin shuttle gene, Ddi1 (DNA damage inducible 1). Ddi1 knockout mice were generated by CRISPR/Cas9 technology and we found that Ddi1 knockout mice were fertile without obvious alterations in reproductive parameters, such as sperm number and morphology. Histological examination of testicular tissues manifested compact seminiferous tubule structure along with all type of germ cells in the knockout mice. Moreover, cytological studies of spermatocytes did not exhibit any noteworthy difference in the progression of prophase I which endorse the fact that Ddi1 has not any vital function during meiosis. Overall, these findings suggested that Ddi1 is not critical for mouse fertility under normal laboratory conditions. The outcome of this study will help researchers to avoid overlap that will not only save their resources but also concentrate their focus on indispensable genes in spermatogenesis and fertility.  相似文献   

16.
The photosynthetic performance of the desiccation‐tolerant, intertidal macro‐algae Ulva prolifera was significantly affected by sorbitol‐induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non‐photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700+ in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non‐photochemical energy dissipation in PS I due to acceptor‐side limitation (Y(NA)) during rehydration in seawater containing DCMU.  相似文献   

17.
To gain insight into the brassinosteroid (BR) signaling pathway, the expression of BR-regulated genes was analysed in the BR-signaling mutant br-insensitive 1 (bri1), and in the presence of a protein kinase inhibitor, staurosporin. BR-regulated genes were classified based on the results. This classification will perhaps prove useful in BR-signalling studies using BR-regulated genes as molecular markers.  相似文献   

18.
Host plant resistance is one of the important components for minimizing the losses because of sorghum shoot fly, Atherigona soccata (Diptera: Muscidae) attack. Therefore, we studied the constitutive and inducible biochemical mechanisms of resistance to A. soccata in a diverse array of sorghum genotypes to identify lines with diverse mechanisms of resistance to this insect. Fifteen sorghum genotypes with different levels of resistance to A. soccata were evaluated. Methanol extracts of 10-d old damaged and undamaged sorghum seedlings were subjected to high-performance liquid chromatography analysis. Association between peak areas of the identified and unidentified compounds with parameters measuring A. soccata resistance was determined through correlation analysis. Amounts of p-hydroxy benzaldehyde and the unidentified compounds at RTs 24.38 and 3.70 min were associated with susceptibility to A. soccata. Genotypes exhibiting resistance to A. soccata were placed in four groups, and the lines showing constitutive and/or induced resistance to A. soccata with different combinations of biochemical factors potentially could be used for increasing the levels of resistance to A. soccata in sorghum.  相似文献   

19.
In many bird populations, individuals show remarkable differences in feather colouration, which are often linked to individual differences in physiological traits, but the mechanisms maintaining this covariation are still unclear. Here, we investigate the variability of the melanic colouration in yellow‐legged gull Larus michahellis chicks. In this species, hatchlings show high variability in the number and colour intensity of black spots in their plumage. In gulls, last‐laid eggs receive less antioxidants but higher levels of androgens than first eggs. We first explored whether these remarkable differences within the clutch affect the feather melanisation during embryo development. Melanic colouration was not related to laying order, but nestling males were darker and had a larger spotted area than nestling females. In chicks hatching from first‐laid eggs, the spot size and spot lightness were negatively correlated. We also explored the effect of the developmental environment, through a cross‐fostering experiment, on the expression of five stress‐related genes (SOD2, ALKBH3, HSPA8, NLRC5 and TRIAP1) and their link with melanic colouration. Post‐hatching hierarchy did not affect the expression of any of the tested genes, but paler chicks showed reduced expression in some studied genes (SOD2, ALKBH3 and HSPA8) in comparison to darker chicks. Our results suggest that melanic chicks suffer less stress during development.  相似文献   

20.
Cotton (Gossypium hirsutum L.) is a major crop and the main source of natural fiber worldwide. Because various abiotic and biotic stresses strongly influence cotton fiber yield and quality, improved stress resistance of this crop plant is urgently needed. In this study, we used Gateway technology to construct a normalized full‐length cDNA overexpressing (FOX) library from upland cotton cultivar ZM12 under various stress conditions. The library was transformed into Arabidopsis to produce a cotton‐FOX‐Arabidopsis library. Screening of this library yielded 6,830 transgenic Arabidopsis lines, of which 757 were selected for sequencing to ultimately obtain 659 cotton ESTs. GO and KEGG analyses mapped most of the cotton ESTs to plant biological process, cellular component, and molecular function categories. Next, 156 potential stress‐responsive cotton genes were identified from the cotton‐FOX‐Arabidopsis library under drought, salt, ABA, and other stress conditions. Four stress‐related genes identified from the library, designated as GhCAS, GhAPX, GhSDH, and GhPOD, were cloned from cotton complementary DNA, and their expression patterns under stress were analyzed. Phenotypic experiments indicated that overexpression of these cotton genes in Arabidopsis affected the response to abiotic stress. The method developed in this study lays a foundation for high‐throughput cloning and rapid identification of cotton functional genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号