首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to search for many target compounds with excellent activities, a series of 1-(1H-1,2,4-triazol-1-yl)-2-(2,4-difluoro-phenyl)-3-[(4-substituted phenyl)-piperazin-1-yl]-propan-2-ols were designed, synthesized, and evaluated as antifungal agents. Results of preliminary antifungal tests against eight human pathogenic fungi in vitro showed that all the title compounds exhibited excellent activities with broad spectrum. Moreover, a molecular model for the binding between 5a and the active site of CACYP51 was provided based on the computational docking results.  相似文献   

2.
Borrelidin, a nitrile containing 18-membered polyketide macrolide, display potent antifungal activity. In this study, a library of borrelidin derivatives were synthesized. Their structures were elucidated by detailed spectroscopic data analysis. The antifungal activity and cytotoxicity of these target compounds were evaluated by broth microdilution and 3-(4,5-dimethylthiazol-2-yl)-3,5-phenytetrazoliumromide (MTT) methods. Among forty-seven prepared analogues, compound 3b had the inhibitory effect on Candida albicans and Candida parapsilosis (MIC: 50 and 12.5?μg/mL, respectively). Furthermore, compounds 4n and 4r presented better antifungal activity against Aspergillus fumigatus with 12.5?μg/mL MIC value, which were insensitive to borrelidin. Preliminary structure-activity relationships (SAR) revealed that the ester analogues containing fragment -OCH2CH2N- had an important effect on the antifungal activity. Meanwhile, the molecular docking study indicated the carboxyl substituents in BN could provide extra interaction with pathogenic fungal threonyl-tRNA synthetase (ThrRS).  相似文献   

3.
The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 μg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

4.
Twenty-nine novel triazole analogues of ravuconazole and isavuconazole were designed and synthesized. Most of the compounds exhibited potent in vitro antifungal activities against 8 fungal isolates. Especially, compounds a10, a13, and a14 exhibited superior or comparable antifungal activity to ravuconazole against all the tested fungi. Structure-activity relationship study indicated that replacing 4-cyanophenylthioazole moiety of ravuconazole with fluorophenylisoxazole resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

5.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

6.
A series of novel pyraclostrobin derivatives were designed and prepared as antifungal agents. Their antifungal activities were tested in vitro with five important phytopathogenic fungi, namely, Batrylis cinerea, Phytophthora capsici, Fusarium sulphureum, Gloeosporium pestis and Sclerotinia sclerotiorum using the mycelium growth inhibition method. Among these compounds, 5s displayed IC50 value of 0.57?μg/mL against Batrylis cinerea and 5k-II displayed IC50 value of 0.43?μg/mL against Sclerotinia sclerotiorum, which were close to that of the positive control pyraclostrobin (0.18?μg/mL and 0.15?μg/mL). Other compounds 5f, 5k-II, 5j, 5m and 5s also exhibited strong antifungal activity. Further enzymatic assay demonstrated compound 5s inhibited porcine bc1 complex with IC50 value of 0.95?μM. The statistical results from an integrated computational pipeline demonstrated the predicted total binding free energy for compound 5s is the highest. Consequently, compound 5s with the biphenyl-4-methoxyl side chain could serve as a new motif as inhibitors of bc1 complex and deserve to be further investigated.  相似文献   

7.
Based on the analysis of the squalene cyclooxygenase (SE) and 14α-demethylase (CYP51) inhibitors pharmacophore feature and the dual-target active sites, a series of compounds with amide-pyridine scaffolds have been designed and synthesized to treat the increasing incidence of drug-resistant fungal infections. In vitro evaluation showed that these compounds have a certain degree of antifungal activity. The most potent compounds 11a, 11b with MIC values in the range of 0.125–2 μg/ml had a broad-spectrum antifungal activity and exhibited excellent inhibitory activity against drug-resistant pathogenic fungi. Preliminary mechanism studies revealed that the compound 11b might play an antifungal role by inhibiting the activity of SE and CYP51. Notably compounds did not show the genotoxicity through plasmid binding assay. Finally, this study of molecular docking, ADME/T prediction and the construction of 3D QSAR model were performed. These results can point out the direction for further optimization of the lead compound.  相似文献   

8.
Twelve novel fenfuram-diarylether hybrids were designed, synthesized and characterized by 1H NMR and MS. Their in vitro antifungal activities were evaluated against five phytopathogenic fungi by mycelial growth inhibition method. Most compounds showed significant antifungal effect on Rhizoctonia solani and Sclerotinia sclerotiorum. Compound 1c exhibited the most potent antifungal effect on R. solani with an EC50 value of 0.242 mg/L, superior to the commercial fungicide boscalid (EC50 = 1.758 mg/L) and the lead fungicide fenfuram (EC50 = 7.691 mg/L). Molecular docking revealed that compound 1c featured a higher affinity for succinate dehydrogenase (SDH) than fenfuram. Furthermore, it was shown that the 2-chlorophenyl group of compound 1c formed a π-π stacking with D/Tyr-128 and a Cl-π interaction with B/His-249, which made compound 1c more active than fenfuram against SDH.  相似文献   

9.
During our efforts to develop new antifungal agents, a number of hybrid molecules containing furanones and fluconazole pharmacophores were designed and synthesized. The new chemical entities thus synthesized were tested for their potential as antifungal agents against various fungal strains and it was observed that the compounds with general structure 7 were potent inhibitors of Candida albicans ATCC 24433, Candida glabrata ATCC 90030, Candida tropicalis ATCC 750 and Candida neoformans ATCC 34664 while the fluconazole analogues 12 exhibited antifungal activity against Candida albicans ATCC 24433 and Candida glabrata ATCC 90030. The structure-activity relationship for these compounds is discussed. The synthetic strategies used in the present work have potential to prepare a large number of compounds for further refinement of structures to obtain molecules suitable for development as antifungal drugs.  相似文献   

10.
On the basis of the active site of lanosterol 14α-demethylase from Candida albicans (CACYP51), a series of 1-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-1H-1,2,4-triazol-5(4H)-one derivatives were synthesized as fluconazole analogs. Results of the preliminary antifungal tests against eight human pathogenic fungi in vitro showed that these compounds exhibited activities to some extent, and some displayed excellent antifungal activities against C. albicans than reference drug fluconazole. Flexible molecular docking was used to analyze the structure-activity relationships (SARs) of the target compounds. The designed compounds interact with CACYP51 through hydrophobic, van der Waals and hydrogen-bonding interactions.  相似文献   

11.
We report here the design, synthesis, and anti-inflammatory activities of a series of perimidine derivatives containing triazole (5a–s). The chemical structures of the synthesized compounds have been assigned on the basis of IR, 1H NMR, 13C NMR, and HRMS spectral analyses. The anti-inflammatory properties of the synthesized perimidine derivatives were evaluated in a lipopolysaccharide (LPS)-stimulated inflammation model. Among the tested compounds, compound 7-(3-methylbenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5h) and compound 7-(2-fluorobenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5n) caused a reduction in the levels of the pro-inflammatory cytokines—tumor necrosis factor (TNF)-α and interleukin (IL)-6—in RAW264.7 cells. The anti-inflammatory potential of compounds 5h and 5n was also evaluated in vivo in a xylene-induced ear inflammation model. Compound 5n showed the most potent anti-inflammatory activity with an inhibition of 49.26% at a dose of 50 mg/kg. This activity is more potent than that of the reference drug ibuprofen (28.13%), and slightly less than that of indometacin (49.36%). To further elucidate the mechanisms underlying these inhibitory effects, LPS-induced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation were studied. The results of western blotting showed that the extract obtained from compound 5n inhibited NF-κB (p65) activation and MAPK (extracellular signal-regulated kinase (ERK) and p38) phosphorylation in a dose-dependent manner. Moreover, the results of a docking study of compound 5n into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of compound 5n on COX-2 antibody was showed it could significantly inhibit COX-2 activity.  相似文献   

12.
New N-4-piperazinyl ciprofloxacin-triazole hybrids 6a-o were prepared and characterized. The in vitro antimycobacterial activity revealed that compound 6a experienced promising antimycobacterial activity against Mycobactrium smegmatis compared with the reference isoniazide (INH). Additionally, compound 6a exhibited broad spectrum antibacterial activity against all the tested strains either Gram-positive or Gram-negative bacteria compared with the reference ciprofloxacin. Also, compounds 6g and 6i displayed considerable antifungal activity compared with the reference ketoconazole. DNA cleavage assay of the highly active compounds 6c and 6h showed a good correlation between the Mycobactrium cleaved DNA gyrase assay and their in vitro antimycobactrial activity. Moreover, molecular modeling studies were done for the designed ciprofloxacin derivatives to predict their binding modes towards Topoisomerase II enzyme (PDB: 5bs8).  相似文献   

13.
A series of novel 2-hydroxyphenyl substituted aminoacetamides was designed by molecular hybridization of the aminoacetamide scaffold and 2-hydroxyphenyl motif. The target compounds were synthesized and their fungicidal activities were evaluated. Some of the target compounds showed excellent antifungal activities against S. sclerotiorum and P. capsici. Significantly, compounds 5e displayed the most potent activity against S. sclerotiorum with EC50 = 2.89 µg/mL, which was lower than that of commercial chlorothalonil. The systematic studies provided strong confidence that the hydroxyl group and the carbonyl group are crucial for the fungicidal activity. Molecular docking studies suggest that SDH enzyme could be one of the potential action targets of our compounds.  相似文献   

14.
In this paper, the nitrogen atom was inserted into the anthracycline system of the isocryptolepine nucleus to obtain the “Aza”-type structure benzo[4,5]imidazo[1,2-c] quinazoline. A series of “Aza”-type derivatives were designed, synthesized and evaluated for their antifungal activity against six plant fungi in vitro. Among all derivatives, compounds A-0, B-1 and B-2 showed significant antifungal activity against B. cinerea with the EC50 values of 2.72 μg/mL, 5.90 μg/mL and 4.00 μg/mL, respectively. Compound A-2 had the highest activity against M. oryzae with the EC50 values of 8.81 μg/mL, and compound A-1 demonstrated the most control efficacy against R. solani (EC50, 6.27 μg/mL). Moreover, compound A-0 was selected to investigate the in vivo tests against B. cinerea and the results indicated that the preventative efficacy of it up to 72.80% at 100 μg/mL. Preliminary mechanism studies revealed that after treatment with A-0 at 5 µg/mL, the B. cinerea mycelia appeared curved, collapsed and the cell membrane integrity may be damaged. The reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia have been changed, and the membrane function and cell proliferation of mycelia were destroyed. Compounds A-0, A-1, B-1 and B-2 presented weaker toxicities against two cells lines than isocryptolepine. This study lays the foundation for the future development of isocryptolepine derivatives as environmentally friendly and safe agricultural fungicides.  相似文献   

15.
Using a rational approach to the design of antifungal agents, a series of azole agents with 1,3,4-oxadiazole side chains were designed and synthesized. The results of preliminary in vitro antifungal tests with eight human pathogenic compounds showed that all of the title compounds exhibited excellent activities against all of the tested fungi except Aspergillus fumigatus. Compounds 11e and 11f were found to be the most effective, with a minimum inhibitory concentration of 0.0039 μg/mL, followed by voriconazole, which has a MIC of 0.0625 μg/mL. The 1,3,4-oxadiazole side chain is not the major contributor but plays a role in eliciting the observed antifungal activity.  相似文献   

16.
In this letter, we report our efforts to design, synthesize and evaluate biological activities of a series of novel hybridized compounds containing 1-tetrazole and 4-pyridinyl-1,2,4-triazole-3-one. An analysis of structure-activity data indicates that the target compounds with bulky and hydrophobic side chains exhibited stronger activities against the Candida spp and Cryptococcus neoformans tested than those of fluconazole and racemic VT-1161. Furthermore, 13k and 13ad were active against Microsporum gypseum, which was resistant to racemic VT-1161. In addition, 13k, 13ac and 13ad, with good in vitro activities against all of pathogenic fungi tested except for Aspergillus fumigatus, had no inhibition of human CYP3A4, suggesting a low risk of drug-drug interactions.  相似文献   

17.
A series of novel potentially antifungal hybrids of 5-flucytosine and fluconazole were designed, synthesized and characterized by 1H NMR, 13C NMR, IR and HRMS spectra. Bioactive assay manifested that some prepared compounds showed moderate to good antifungal activities in comparison with fluconazole and 5-flucytosine. Remarkably, the 3,4-dichlorobenzyl hybrid 7h could inhibit the growth of C. albicans ATCC 90023 and clinical resistant strain C. albicans with MIC values of 0.008 and 0.02?mM, respectively. The active molecule 7h could not only rapidly kill C. albicans but also efficiently permeate membrane of C. albicans. Molecular docking study revealed that compound 7h could interact with the active site of CACYP51 through hydrogen bond. Quantum chemical studies were also performed to explain the high antifungal activity. Further preliminary mechanism research suggested that molecule 7h could intercalate into calf thymus DNA to form a steady supramolecular complex, which might block DNA replication to exert the powerful bioactivities.  相似文献   

18.
19.
Sixteen novel pyrazole carboxamides with diarylamines scaffold were designed, synthesized and characterized in detail via 1H NMR, 13C NMR and ESI-HRMS. Preliminary bioassays showed that some of the target compounds exhibited good antifungal activity against Rhizoctonia solani, Fusarium oxysporum, Phytophthora infestans and Fusarium graminearum. Among them, compound 1c exhibited the highest antifungal activities against R. solani in vitro with EC50 value of 0.005?mg/L, superior to the commercially available fungicide fluxapyroxad (EC50?=?0.033?mg/L). And compound 1c (IC50?=?0.034?mg/L) showed higher inhibition abilities against succinate dehydrogenase than fluxapyroxad (IC50?=?0.037?mg/L). This study suggests that compound 1c could be regarded as a potential succinate dehydrogenase inhibitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号