首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The individual flavin species of axenic Entamoeba histolytica were assayed: separated riboflavin was assayed by the lumiflavin method; flavin-adenine dinucleotide (FAD), by an enzymatic method; flavin mononucleotide (FMN) was calculated from the difference, total flavin minus FAD and riboflavin. The amount of flavin in micrograms per grams fresh cells follows: total flavin, 7.6 ± 0.9 calculated as riboflavin; riboflavin, 1.6 ± 0.7; FMN, 6.6 ± 0.5; and FAD, 1.2 ± 0.1. Recalculated to nanomoles per milligrams total amebal protein these values were: total flavin, 0.21; riboflavin, 0.04; FMN, 0.15; and FAD, 0.02. The identity of each flavin was confirmed by a paper chromatographic method. Analyses on Panmede, the main source of flavins in the TP-S-1 medium, indicate that it contains all three forms of flavin. Its contribution to growth medium in micrograms per milliliters: riboflavin, 2.1 ± 0.3; FMN, 0.6 ± 0.1; and FAD, 0.4 ± 0.1. The in vivo biosynthesis of FMN and FAD from riboflavin by E. histolytica is demonstrated. A new and convenient method was found to separate riboflavin from flavin nucleotides in tissue extracts.  相似文献   

2.
The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity). Herein, we investigated the role of F26 residue of the 24-GFFD-28 motif of SaFADS FMNAT domain, mostly conserved in the reducing agent-dependent FADSs. The steady-state kinetics studies showed changes in the KmATP values for mutants, indicating that the F26 residue is crucial for the FMNAT activity. Further, the FMNAT activity of the F26S mutant was observed to be higher than that of the wild-type SaFADS and its other variants at lower reducing agent concentration. In addition, the FADpp activity was inhibited by an excess of FAD substrate, which was more potent in the mutants. The altered orientation of the F26 side-chain observed in the molecular dynamics analysis suggested its plausible involvement in stabilizing FMN and ATP substrates in their respective binding pockets. Also, the SaFADS ternary complex formed with reduced FMN exhibited significant structural changes in the β4n-β5n and L3n regions compared to the oxidised FMN bound and apo forms of SaFADS. Overall, our data suggests the functional role of F26 residue in the FMNAT domain of SaFADS.  相似文献   

3.
Fe(III)-respiring bacteria such as Shewanella species play an important role in the global cycle of iron, manganese, and trace metals and are useful for many biotechnological applications, including microbial fuel cells and the bioremediation of waters and sediments contaminated with organics, metals, and radionuclides. Several alternative electron transfer pathways have been postulated for the reduction of insoluble extracellular subsurface minerals, such as Fe(III) oxides, by Shewanella species. One such potential mechanism involves the secretion of an electron shuttle. Here we identify for the first time flavin mononucleotide (FMN) and riboflavin as the extracellular electron shuttles produced by a range of Shewanella species. FMN secretion was strongly correlated with growth and exceeded riboflavin secretion, which was not exclusively growth associated but was maximal in the stationary phase of batch cultures. Flavin adenine dinucleotide was the predominant intracellular flavin but was not released by live cells. The flavin yields were similar under both aerobic and anaerobic conditions, with total flavin concentrations of 2.9 and 2.1 μmol per gram of cellular protein, respectively, after 24 h and were similar under dissimilatory Fe(III)-reducing conditions and when fumarate was supplied as the sole electron acceptor. The flavins were shown to act as electron shuttles and to promote anoxic growth coupled to the accelerated reduction of poorly crystalline Fe(III) oxides. The implications of flavin secretion by Shewanella cells living at redox boundaries, where these mineral phases can be significant electron acceptors for growth, are discussed.  相似文献   

4.
5.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

6.
This work shows that the ribC wild-type gene product has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism of Bacillus subtilis, as growth of a ribC deletion mutant strain was dependent on exogenous supply of FMN and the presence of a heterologous FAD-synthetase gene in its chromosome. Upon cultivation with growth-limiting amounts of FMN, this ribC deletion mutant strain overproduced riboflavin, while with elevated amounts of FMN in the culture medium, no riboflavin overproduction was observed. In a B. subtilis ribC820 mutant strain, the corresponding ribC820 gene product has reduced flavokinase/FAD-synthetase activity. In this strain, riboflavin overproduction was also repressed by exogenous FMN but not by riboflavin. Thus, flavin nucleotides, but not riboflavin, have an effector function for regulation of riboflavin biosynthesis in B. subtilis, and RibC seemingly is not directly involved in the riboflavin regulatory system. The mutation ribC820 leads to deregulation of riboflavin biosynthesis in B. subtilis, most likely by preventing the accumulation of the effector molecule FMN or FAD.  相似文献   

7.
Using the bifunctional FAD synthetase from Corynebacterium ammoniagenes, which has the two sequential activities of flavokinase and FMN adenylyl-transferase in FAD biosynthesis, a method of production of the intermediate FMN without any accumulation of FAD was investigated. Various phosphate polymers having no adenylyl moiety were tested for their ability to phosphorylate riboflavin to FMN, using a crude enzyme from C. ammoniagenes/pKH46, which is an FAD-synthetase-gene-dosed strain. Only metaphosphate, other than ATP, could phosphorylate riboflavin to FMN, but FAD did not accumulate at all. The conditions for the conversion of riboflavin to FMN were optimized. The metaphosphate-dependent phosphorylation reaction required Mg2+ as the most effective divalent cation. The best concentrations were 10 mM for MgCl2 and 3mg/ml for metaphosphate. The riboflavin added to the reaction mixture was almost completely converted into FMN after 6 h incubation in the presence of high concentrations of the enzyme preparation.  相似文献   

8.
The net photosynthetic efficiency in C3 plants (such asrice, wheat and other major crops) can be decreased by30% due to the metabolism of photorespiration [1], inwhich glycolate oxidase (GO) serves as a key enzyme. Itis known that GO, with flavin mononucleotide (FMN) asa cofactor, belongs to flavin oxidase [2]. But it differs fromother flavoproteins in that FMN is loosely bound to itsapoprotein and there exists a dissociation balance betweenthem, which indicates that FMN probably regulate…  相似文献   

9.
A method is described for determining riboflavin 5′-phosphate (FMN) and flavin adenine dinucleotide (FAD) in mixtures by fluorimetric titration with the FMN-specific apoprotein of flavodoxin from Peptostreptococcus elsdenii. Accurate determinations can be carried out in the presence of a variety of compounds that decrease the fluorescence yield of FMN; the method may therefore be especially useful in the analysis of crude protein-free extracts of biological materials.  相似文献   

10.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

11.
The cloning of a bifunctional FAD synthetase gene, which shows flavokinase and FMN adenylyltransferase activities, from Corynebacterium ammoniagenes was tried by hybridization with synthetic DNAs corresponding to the N-terminal amino acid sequence. The cloned PstI-digested 4.4 × 103-base (4.4-kb) fragment could not express the FAD synthetase activity in E. coli, but could increase the two activities by the same factor of about 20 in C. amminoagenes. The FAD-synthetase-gene-amplified C. amminoagenes cells were applied to the production of FAD from FMN or riboflavin. The productivity of FAD from FMN was increased four to five times compared with the parent strain, and reached a 90% molar yield. The productivity of FAD from riboflavin was increased about eight times, with a 50% molar yield. The addition of Zn2+ to the reaction mixtures for the conversion from riboflavin to FAD brought about the specific inhibition of adenylyltransferase activity and resulted in the accumulation of FMN.  相似文献   

12.
Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5‐amino‐6‐ribitylamino‐2,4(1H,3H) pyrimidinedione 5′‐phosphate (ARPP) has not been characterized from any organism. By using as the query sequence a previously identified plastidial FMN hydrolase AtcpFHy1 (At1g79790), belonging to the haloacid dehalogenase (HAD) superfamily, seven candidates for the missing ARPP phosphatase were found, cloned, recombinantly expressed, and purified. Activity screening showed that the enzymes encoded by AtcpFHy1, At4g11570, and At4g25840 catalyze dephosphorylation of ARPP. AtcpFHy1 was renamed AtcpFHy/PyrP1, At4g11570 and At4g25840 were named AtPyrP2 and AtGpp1/PyrP3, respectively. Subcellular localization in planta indicated that AtPyrP2 was localized in plastids and AtGpp1/PyrP3 in mitochondria. Biochemical characterization of AtcpFHy/PyrP1 and AtPyrP2 showed that they have similar Km values for the substrate ARPP, with AtcpFHy/PyrP1 having higher catalytic efficiency. Screening of 21 phosphorylated substrates showed that AtPyrP2 is specific for ARPP. Molecular weights of AtcpFHy/PyrP1 and AtPyrP2 were estimated at 46 and 72 kDa, suggesting dimers. pH and temperature optima for AtcpFHy/PyrP1 and AtPyrP2 were ~7.0–8.5 and 40–50°C. T‐DNA knockout of AtcpFHy/PyrP1 did not affect the flavin profile of the transgenic plants, whereas silencing of AtPyrP2 decreased accumulation of riboflavin, FMN, and FAD. Our results strongly support AtPyrP2 as the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The identification of this enzyme closes a long‐standing gap in understanding of the riboflavin biosynthesis in plants.  相似文献   

13.
Nitric oxide (NO) and reactive oxygen species (ROS) play key roles in plant immunity. However, the regulatory mechanisms of the production of these radicals are not fully understood. Hypersensitive response (HR) cell death requires the simultaneous and balanced production of NO and ROS. In this study we indentified NbRibA encoding a bifunctional enzyme, guanosine triphosphate cyclohydrolase II/3,4‐dihydroxy‐2‐butanone‐4‐phosphate synthase, which participates in the biosynthesis of flavin, by screening genes related to mitogen‐activated protein kinase‐mediated cell death, using virus‐induced gene silencing. Levels of endogenous riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are important prosthetic groups for several enzymes participating in redox reactions, decreased in NbRibA‐silenced Nicotiana benthamiana. Silencing NbRibA compromised not only HR cell death, but also the NO and ROS production induced by INF1 elicitin and a constitutively active form of NbMEK2 (NbMEK2DD), and also induced high susceptibility to oomycete Phytophthora infestans and ascomycete Colletotrichum orbiculare. Compromised radical production and HR cell death induced by INF1 in NbRibA‐silenced leaves were rescued by adding riboflavin, FMN or FAD. These results indicate that flavin biosynthesis participates in regulating NO and ROS production, and HR cell death.  相似文献   

14.
The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of respiratory capability by FAD1 is shown to be due to extragenic suppression. FAD1 codes for an essential yeast protein, since disruption of the gene induces a lethal phenotype. The FAD1 product has been inferred to be yeast FAD synthetase, an enzyme that adenylates FMN to FAD. This conclusion is based on the following evidence. S. cerevisiae transformed with FAD1 on a multicopy plasmid displays an increase in FAD synthetase activity. This is also true when the gene is expressed in Escherichia coli. Lastly, the FAD1 product exhibits low but significant primary sequence similarity to sulfate adenyltransferase, which catalyzes a transfer reaction analogous to that of FAD synthetase. The lower mitochondrial concentration of FAD in G178 mutants is proposed to be caused by an inefficient exchange of external FAD for internal FMN. This is supported by the absence of FAD synthetase activity in yeast mitochondria and the presence of both extramitochondrial and mitochondrial riboflavin kinase, the preceding enzyme in the biosynthetic pathway. A lesion in mitochondrial import of FAD would account for the higher concentration of mitochondrial FMN in the mutant if the transport is catalyzed by an exchange carrier. The ability of FAD1 to suppress impaired transport of FAD is explained by mislocalization of the synthetase in cells harboring multiple copies of the gene. This mechanism of suppression is supported by the presence of mitochondrial FAD synthetase activity in S. cerevisiae transformed with FAD1 on a high-copy-number plasmid but not in mitochondrial of a wild-type strain.  相似文献   

15.
A pair of proteins involved in electron transfer, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro. It was demonstrated by fluorescence spectroscopy that flavin adenine dinucleotide (FAD) can slowly and spontaneously be released from ETF. This release is followed by increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is dramatically activated by TMAD preparations that induce a local conformational transition in ETF. It was shown on the basis of the values of tryptophan polarization and lifetime with the use of the Levshin–Perrin equation that the sizes of protein particles were not changed after mixing of TMAD and ETF; i.e., these proteins by themselves did not form a stable complex with each other. The release of flavin from ETF did not occur in the presence of trimethylamine and formaldehyde in the protein mixture. In this case, a stable complex between the proteins is probably formed with the participation of formaldehyde. FAD is hydrolyzed to flavin mononucleotide (FMN) and AMP after a short-term incubation of ETF with ferricyanide. This fact explains the previous detection of AMP in ETF preparations by other researches. A fluorescence method for distinguishing FAD from FMN in solution with the use ethylene glycol is proposed.  相似文献   

16.
Riboflavin is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which work as cofactors of numerous enzymes. Understanding the supply system of these cofactors in bacteria, particularly those used for industrial production of value added chemicals, is important given the pivotal role the cofactors play in substrate metabolism. In this work, we examined the effect of disruption of riboflavin utilization genes on cell growth, cytoplasmic flavin levels, and expression of riboflavin transporter in Corynebacterium glutamicum. Disruption of the ribA gene that encodes bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase in C. glutamicum suppressed growth in the absence of supplemental riboflavin. The growth was fully recovered upon supplementation with 1 μM riboflavin, albeit at reduced intracellular concentrations of FMN and FAD during the log phase. Concomitant disruption of the ribA and ribM gene that encodes a riboflavin transporter exacerbated supplemental riboflavin requirement from 1 μM to 50 μM. RibM expression in FMN-rich cells was about 100-fold lower than that in FMN-limited cells. Mutations in putative FMN-riboswitch present immediately upstream of the ribM gene abolished the FMN response. This 5′UTR sequence of ribM constitutes a functional FMN-riboswitch in C. glutamicum.  相似文献   

17.
Sensitive capillary electrophoresis (CE) methods are required for emerging areas of biochemical research such as the metabolome. In this report, dynamic pH junction-sweeping CE with laser-induced fluorescence (LIF) detection is applied as a robust single method to analyze trace amounts of three flavin derivatives, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD), from several types of samples including bacterial cell extracts, recombinant protein, and biological fluids. Submicromolar amounts of flavin coenzymes were measured directly from formic acid cell extracts of Bacillus subtilis. Significant differences in flavin concentration were measured in cell extracts derived from either glucose or malate as the carbon source in the culture media. Quantitative assessment of FAD and FMN content from selected flavoenzymes was demonstrated after heat denaturation to release noncovalently bound coenzymes and deproteinization. This method was also applied to the analysis of free flavins in pooled human plasma and urine without the need for laborious off-line sample preconcentration. Picomolar detectability of flavins by CE-LIF detection was realized with on-line preconcentration (up to 15% capillary length used for injection) by dynamic pH junction-sweeping, resulting in a limit of detection (S/N = 3) of about 4.0 pM for FAD and FMN. This represents over a 60-fold improvement in concentration sensitivity compared to those of previous techniques using conventional injections. The method was validated in terms of reproducibility, sensitivity, linearity, and specificity. Flavin analysis by dynamic pH junction-sweeping CE-LIF offers a simple, yet sensitive way to analyze trace levels of flavin metabolites from complex biological samples.  相似文献   

18.
The role of ribityl side chain hydroxyl groups of the flavin moiety in the covalent flavinylation reaction and catalytic activities of recombinant human liver monoamine oxidases (MAO) A and B have been investigated using the riboflavin analogue: N(10)-omega-hydroxypentyl-isoalloxazine. Using a rib5 disrupted strain of Saccharomyces cerevisiae which is auxotrophic for riboflavin, MAO A and MAO B were expressed separately under control of a galactose inducible GAL10/CYC1 promoter in the presence of N(10)-omega-hydroxypentyl-isoalloxazine as the only available riboflavin analogue. Analysis of mitochondrial membrane proteins shows both enzymes to be expressed at levels comparable to those cultures grown on riboflavin and to contain covalently bound flavin. Catalytic activities, as monitored by kynuramine oxidation, are equivalent to (MAO A) or 2-fold greater (MAO B) than control preparations expressed in the presence of riboflavin. Although N(10)-omega-hydroxypentyl-isoalloxazine is unable to support growth of riboflavin auxotrophic S. cerevisiae, it is converted to the FMN level by yeast cell free extracts. The FMN form of the analogue is converted to the FAD level by the yeast FAD synthetase, as shown by expression of the recombinant enzyme in Escherichia coli. These data show that the ribityl hydroxyl groups of the FAD moiety are not required for covalent flavinylation or catalytic activities of monoamine oxidases A and B. This is in contrast to the suggestion based on mutagenesis studies that an interaction between the 3'-hydroxyl group of the flavin and the beta-carbonyl of Asp(227) is required for the covalent flavinylation reaction of MAO B (Zhou et al., J. Biol. Chem. 273 (1998) 14862-14868).  相似文献   

19.
The nucleotide sequence of the ribC gene encoding the synthesis of bifunctional flavokinase/flavine adenine nucleotide (FAD) synthetase in Bacillus subtilis have been determined in a family of riboflavinconstitutive mutants. Two mutations have been found in the proximal region of the gene, which controls the transferase (FAD synthase) activity. Three point mutations and one double mutation have been found (in addition to the two mutations that were detected earlier) in the distal region of the gene, which controls the flavokinase (flavin mononucleotide (FMN) synthase) activity. On the basis of all data known to date, it has been concluded that the identified mutations affect riboflavin and ATP binding sites. No mutations have been found in the PTAN conserved sequence, which forms the magnesium and ATP common binding site and is identical for organisms of all organizational levels, from bacteria too humans.  相似文献   

20.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe–2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na+-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na+-NQR contains approximately 1.7 mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na+-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na+-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号