首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Group I introns often encode proteins that catalyze site-specific DNA hydrolysis. Some of these proteins have acquired the ability to promote splicing of their cognate intron, but whether these two activities reside in different regions of the protein remains obscure. A crystal structure of I-AniI, a dual function intron-encoded protein, has shown that the protein has two pseudo-symmetric domains of equal size. Each domain contacts its DNA substrate on either side of two cleavage sites. As a first step to identify the RNA binding surface, the N- and C-terminal domains of I-AniI were separately expressed and tested for promoting the splicing of the mitochondrial (mt) COB pre-RNA. The N-terminal protein showed no splicing activation or RNA binding, suggesting that this domain plays a minimal role in activity or is improperly folded. Remarkably, the 16-kDa C-terminal half facilitates intron splicing with a rate similar to that of the full-length protein. Both the C-terminal fragment and full-length proteins bind tightly to the COB intron. RNase footprinting shows that the C-terminal and full-length proteins bind to the same regions and induce the same conformational changes in the COB intron. Together, these results show that the C-terminal fragment of I-AniI is necessary and sufficient for maturase activity and suggests that I-AniI acquired splicing function by utilizing a relatively small protein surface that likely represents a novel RNA binding motif. This fragment of I-AniI represents the smallest group I intron splicing cofactor described to date.  相似文献   

4.
INCREASED SIZE EXCLUSION LIMIT 2 (ISE2) encodes a putative DEVH‐box RNA helicase originally identified through a genetic screening for Arabidopsis mutants altered in plasmodesmata (PD) aperture. Depletion of ISE2 also affects chloroplasts activity, decreases accumulation of photosynthetic pigments and alters expression of photosynthetic genes. In this work, we show the chloroplast localization of ISE2 and decipher its role in plastidic RNA processing and, consequently, PD function. Group II intron‐containing RNAs from chloroplasts exhibit defective splicing in ise2 mutants and ISE2‐silenced plants, compromising plastid viability. Furthermore, RNA immunoprecipitation suggests that ISE2 binds in vivo to several splicing‐regulated RNAs. Finally, we show that the chloroplast clpr2 mutant (defective in a subunit of a plastidic Clp protease) also exhibits abnormal PD function during embryogenesis, supporting the idea that chloroplast RNA processing is required to regulate cell–cell communication in plants.  相似文献   

5.
The Pet54p protein is an archetypical example of a dual functioning (‘moonlighting’) protein: it is required for translational activation of the COX3 mRNA and splicing of the aI5β group I intron in the COX1 pre-mRNA in Saccharomyces cerevisiae mitochondria (mt). Genetic and biochemical analyses in yeast are consistent with Pet54p forming a complex with other translational activators that, in an unknown way, associates with the 5′ untranslated leader (UTL) of COX3 mRNA. Likewise, genetic analysis suggests that Pet54p along with another distinct set of proteins facilitate splicing of the aI5β intron, but the function of Pet54 is, also, obscure. In particular, it remains unknown whether Pet54p is a primary RNA-binding protein that specifically recognizes the 5′ UTL and intron RNAs or whether its functional specificity is governed in other ways. Using recombinant protein, we show that Pet54p binds with high specificity and affinity to the aI5β intron and facilitates exon ligation in vitro. In addition, Pet54p binds with similar affinity to the COX3 5′ UTL RNA. Competition experiments show that the COX3 5′UTL and aI5β intron RNAs bind to the same or overlapping surface on Pet54p. Delineation of the Pet54p-binding sites by RNA deletions and RNase footprinting show that Pet54p binds across a similar length sequence in both RNAs. Alignment of the sequences shows significant (56%) similarity and overlap between the binding sites. Given that its role in splicing is likely an acquired function, these data support a model in which Pet54p's splicing function may have resulted from a fortuitous association with the aI5β intron. This association may have lead to the selection of Pet54p variants that increased the efficiency of aI5β splicing and provided a possible means to coregulate COX1 and COX3 expression.  相似文献   

6.
Group II and nuclear pre-mRNAs introns share a common splicing pathway involving a lariat intermediate, as well as some primary sequence similarities at the splice junctions. In this work, we analyze the role of the conserved nucleotides at the first and penultimate positions (G1 and A886) of a group II self-splicing intron. We show that the G1 nucleotide is essential for the efficiency of both the first and the second splicing steps, while substitutions at the penultimate nucleotide affect mostly the efficiency of the second step. A reciprocal suppression of the second splicing step defect can be observed in some double mutants. This result is best explained by a non-Watson-Crick interaction between the first and the penultimate nucleotides of the intron, which occurs after lariat formation. The finding that an interaction between intron boundaries is required for the second splicing step in both group II and nuclear pre-mRNA introns strengthens the idea that both systems employ similar mechanisms, albeit with differences in the details of the nucleotide interactions.  相似文献   

7.
Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families.  相似文献   

8.
9.
10.
11.
Disney MD  Testa SM  Turner DH 《Biochemistry》2000,39(23):6991-7000
Pneumocystis carinii is a mammalian pathogen that contains a self-splicing group I intron in its large subunit rRNA precursor. We report the binding of methylphosphonate/DNA chimeras and neutral methylphosphonate oligonucleotides to a ribozyme that is a truncated form of the intron. At 15 mM Mg(2+), the nuclease-resistant all-methylphosphonate hexamer, d(AmTmGmAmCm)rU, with a sequence that mimics the 3' end of the precursor's 5' exon, binds with a dissociation constant of 272 nM. The hexamer's dissociation constant for binding by base-pairing alone to the ribozyme's binding site sequence is 8.3 mM. Thus there is a 30 000-fold binding enhancement by tertiary interactions (BETI), which is close to the 60 000-fold enhancement previously observed with the all-ribo hexamer, r(AUGACU). Evidently, backbone charge and 2' hydroxyl groups are not required for BETI. At 3-15 mM Mg(2+), the all-methylphosphonate and DNA oligonucleotides trans-splice to a truncated form of the rRNA precursor, but do not compete with cis-splicing when pG is present. These results suggest that uncharged or partially charged backbones may be used to design therapeutics to target RNAs through binding enhancement by tertiary interactions and suicide inhibition strategies.  相似文献   

12.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

13.
14.
15.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

16.
Saccharomyces cerevisiae cells lacking Mne1 are deficient in intron splicing in the gene encoding the Cox1 subunit of cytochrome oxidase but contain wild-type levels of the bc(1) complex. Thus, Mne1 has no role in splicing of COB introns or expression of the COB gene. Northern experiments suggest that splicing of the COX1 aI5β intron is dependent on Mne1 in addition to the previously known Mrs1, Mss116, Pet54, and Suv3 factors. Processing of the aI5β intron is similarly impaired in mne1Δ and mrs1Δ cells and overexpression of Mrs1 partially restores the respiratory function of mne1Δ cells. Mrs1 is known to function in the initial transesterification reaction of splicing. Mne1 is a mitochondrial matrix protein loosely associated with the inner membrane and is found in a high mass ribonucleoprotein complex specifically associated with the COX1 mRNA even within an intronless strain. Mne1 does not appear to have a secondary function in COX1 processing or translation, because disruption of MNE1 in cells containing intronless mtDNA does not lead to a respiratory growth defect. Thus, the primary defect in mne1Δ cells is splicing of the aI5β intron in COX1.  相似文献   

17.
18.
Rush M  Zhao X  Schwartz S 《Journal of virology》2005,79(18):12002-12015
Successful inhibition of human papillomavirus type 16 (HPV-16) late gene expression early in the life cycle is essential for persistence of infection, the highest risk factor for cervical cancer. Our study aimed to locate regulatory RNA elements in the early region of HPV-16 that influence late gene expression. For this purpose, subgenomic HPV-16 expression plasmids under control of the strong human cytomegalovirus immediate early promoter were used. An exonic splicing enhancer that firmly supported the use of the E4 3' splice site at position 3358 in the early region of the HPV-16 genome was identified. The enhancer was mapped to a 65-nucleotide AC-rich sequence located approximately 100 nucleotides downstream of the position 3358 3' splice site. Deletion of the enhancer caused loss of both splicing at the upstream position 3358 3' splice site and polyadenylation at the early polyadenylation signal, pAE. Direct splicing occurred at the competing L1 3' splice site at position 5639 in the late region. Optimization of the position 3358 3' splice site restored splicing to that site and polyadenylation at pAE. Additionally, a sequence of 40 nucleotides with a negative effect on late mRNA production was located immediately downstream of the enhancer. As the E4 3' splice site is employed by both early and late mRNAs, the enhancer constitutes a key regulator of temporal HPV-16 gene expression, which is required for early mRNA production as well as for the inhibition of premature late gene expression.  相似文献   

19.
20.
Bacteria such as Escherichia coli must coordinate cell elongation and cell division. Elongation is regulated by an elongasome complex containing MreB actin and the transmembrane protein RodZ, which regulates assembly of MreB, whereas division is regulated by a divisome complex containing FtsZ tubulin. These complexes were previously thought to function separately. However, MreB has been shown to directly interact with FtsZ to switch to cell division from cell elongation, indicating that these complexes collaborate to regulate both processes. Here, we investigated the role of RodZ in the regulation of cell division. RodZ localized to the division site in an FtsZ‐dependent manner. We also found that division‐site localization of MreB was dependent on RodZ. Formation of a Z ring was delayed by deletion of rodZ, suggesting that division‐site localization of RodZ facilitated the formation or stabilization of the Z ring during early cell division. Thus, RodZ functions to regulate MreB assembly during cell elongation and facilitates the formation of the Z ring during cell division in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号