首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because ungulates are important contributors to ecosystem function, understanding the “ecology of fear” could be important to the conservation of ecosystems. Although studying ungulate ecology of fear is common, knowledge from ungulate systems is highly contested among ecologists. Here, we review the available literature on the ecology of fear in ungulates to generalize our current knowledge and how we can leverage it for conservation. Four general focus areas emerged from the 275 papers included in our literature search (and some papers were included in multiple categories): behavioral responses to predation risk (79%), physiological responses to predation risk (15%), trophic cascades resulting from ungulate responses to predation risk (20%), and manipulation of predation risk (1%). Of papers focused on behavior, 75% were about movement and habitat selection. Studies were biased toward North America (53%), tended to be focused on elk (Cervus canadensis; 29%), and were dominated by gray wolves (40%) or humans (39%) as predators of interest. Emerging literature suggests that we can utilize predation risk for conservation with top‐down (i.e., increasing predation risk) and bottom‐up (i.e., manipulating landscape characteristics to increase risk or risk perception) approaches. It is less clear whether fear‐related changes in physiology have population‐level fitness consequences or cascading effects, which could be fruitful avenues for future research. Conflicting evidence of trait‐mediated trophic cascades might be improved with better replication across systems and accounting for confounding effects of ungulate density. Improving our understanding of mechanisms modulating the nature of trophic cascades likely is most important to ensure desirable conservation outcomes. We recommend future work embrace the complexity of natural systems by attempting to link together the focal areas of study identified herein.  相似文献   

2.
Prey animals must balance antipredatory behaviour with foraging behaviour. According to the risk allocation hypothesis, prey increase antipredatory behaviour and reduce foraging activity during pulses of high risk, but with continuous risk, other activities must continue and antipredatory behaviour decreases despite the risk. We studied the impact of lynx presence on the vigilance behaviour of wild roe deer under conditions of (i) a pulsed elevated risk by experimentally spreading lynx urine as an olfactory cue, and (ii) continuous risk by comparing an area where lynx was eradicated 160 years ago to an area where lynx has been re‐introduced 30 years ago. Roe deer were extremely vigilant in response to the predator olfactory cue; however, roe deer vigilance did not differ measurably among areas with or without potential lynx presence. Deer were more vigilant before sunset than during the night at both study areas, probably due to long‐term adaptation of roe deer to human hunting during daytime. Vigilance decreased from August to September even though activity of lynx increases in autumn, which may be a result either of increased foraging due to decrease in food quality in autumn, or of changes in social organization of the deer. Our results suggested that the degree of vigilance depends on environmental cues. We found that roe deer respond to lynx urine despite a long absence of lynx in the ecosystem. Our results support the risk allocation hypothesis for responses to pulses of high risk but not for responses to continuous elevated levels of risk.  相似文献   

3.
The increased abundance of large carnivores in Europe is a conservation success, but the impact on the behavior and population dynamics of prey species is generally unknown. In Europe, the recolonization of large carnivores often occurs in areas where humans have greatly modified the landscape through forestry or agriculture. Currently, we poorly understand the effects of recolonizing large carnivores on extant prey species in anthropogenic landscapes. Here, we investigated if ungulate prey species showed innate responses to the scent of a regionally exterminated but native large carnivore, and whether the responses were affected by human‐induced habitat openness. We experimentally introduced brown bear Ursus arctos scent to artificial feeding sites and used camera traps to document the responses of three sympatric ungulate species. In addition to controls without scent, reindeer scent Rangifer tarandus was used as a noncarnivore, novel control scent. Fallow deer Dama dama strongly avoided areas with bear scent. In the presence of bear scent, all ungulate species generally used open sites more than closed sites, whereas the opposite was observed at sites with reindeer scent or without scent. The opening of forest habitat by human practices, such as forestry and agriculture, creates a larger gradient in habitat openness than available in relatively unaffected closed forest systems, which may create opportunities for prey to alter their habitat selection and reduce predation risk in human‐modified systems that do not exist in more natural forest systems. Increased knowledge about antipredator responses in areas subjected to anthropogenic change is important because these responses may affect prey population dynamics, lower trophic levels, and attitudes toward large carnivores. These aspects may be of particular relevance in the light of the increasing wildlife populations across much of Europe.  相似文献   

4.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

5.
6.
Moshe Zaguri  Dror Hawlena 《Oikos》2019,128(10):1458-1466
Animals balance the risk of predation against other vital needs by adjusting their spatial behavior to match spatiotemporal variation in predation risk. To map this ‘landscape of fear’, prey use evolutionary rules of thumbs that are associated with the activity and hunting efficiency of predators. In addition, prey acquire perceptual information about the presence, identity and state of potential predators and use these cues to focus their acute anti‐predatory responses. Our goal was to explore if and how prey also use such perceptual information that decays with time to update their spatiotemporal risk assessment. We placed scorpions in freshly dug burrows and recorded the spatial activity and defense behavior of their isopod prey upon encountering the burrows straight after settling the scorpions and seven days later. To corroborate our understanding, we also examined the isopods’ detailed reactions towards deserted scorpion burrows. The isopods reacted defensively to scorpion burrows during their first encounter. After seven days, proportionally more isopods approached the scorpion burrows on their way out for foraging and fewer isopods encountered it on their way back. No changes in the spatial activity were observed towards deserted burrows. In addition, on the eighth day, more isopods entered the risky area near the scorpion burrows when leaving their own burrow than on the first encounter. The results suggest that isopods used predator cues to readjust the ‘landscape of fear’. Yet, rather than avoiding the dangerous areas altogether, the isopods implemented risky inspection behavior, validating whether the danger is actual. Our findings imply that inspection behavior toward predators can be used for future planning of prey spatial activity, offsetting possible ‘information decay costs’.  相似文献   

7.
An animal's pattern of habitat use can reveal how different parts of its environment vary in quality based on the costs (such as predation risk) and benefits (such as food intake) of using each habitat. We studied klipspringer habitat use in Augrabies Falls National Park, South Africa using giving‐up densities (GUDs; the amount of food remaining in a resource patch following exploitation) in experimental food patches. We tested hypotheses related to how salient habitat variables might influence klipspringers' perceptions of foraging costs. At small spatial scales (3–4 m), klipspringer GUDs did not vary with cover and open microhabitats, or with the four cardinal aspects (shading) around shrubs. Adding water adjacent to food patches did not influence GUDs, showing that water is not a limiting complementary resource to food. Generally, klipspringers do not appear to be physiologically constrained. There was no difference in GUDs between four daily time periods, or between summer and winter; however, a significant interaction effect of time‐of‐day with season resulted from GUDs during the midday time period in winter being significantly higher (perceived value lower) than during the same time period in summer. At moderate spatial scales (10–60 m), klipspringer GUDs increased with distance from rocks because of increased predation risk. Based on GUDs collected at the largest scale (two 4.41‐ha grids), klipspringers preferred foraging at greater distances from drainage lines and on pebble and cobble substrates. Overall, this study has shown the efficacy of measuring GUDs to determine klipspringers' habitat utilization while foraging.  相似文献   

8.
The effects of predators on prey populations may significantly alter many aspects of prey biology, including spatial distribution, foraging activities, and social interactions. In aquatic habitats, chemosensation is an important mode of communication and has been shown for many taxa, including crayfish, to be used in detection of predator and/or conspecific alarm cues. Here, we report on an experiment to test the hypothesis that detection of alarm cues results in greater individual investment in contests over shelters. We tested this hypothesis through dyadic contests between sex- and size-matched, non-reproductive individuals of Faxonius virilis. We found that crayfish responded to exposure to alarm cues by spending more time inside a shelter. We also report that in contests between pairs in which one crayfish had been exposed to alarm cues and the other had not, exposed individuals were significantly more likely to win ownership of a single shelter. However, we did not detect any differences in the contest parameters we recorded between exposed and unexposed crayfish. These impacts on both individual and social behavior indicate that the presence of predators is likely to have large effects on the distribution and structure of crayfish populations.  相似文献   

9.
10.
11.
Predators not only consume prey but exert nonconsumptive effects in form of scaring, consequently disturbing feeding or reproduction. However, how alternative food sources and hunting mode interactively affect consumptive and nonconsumptive effects with implications for prey fitness have not been addressed, impending functional understanding of such tritrophic interactions. With a herbivorous beetle, two omnivorous predatory bugs (plant sap as alternative food, contrasting hunting modes), and four willow genotypes (contrasting suitability for beetle/omnivore), we investigated direct and indirect effects of plant quality on the beetles key reproductive traits (oviposition rate, clutch size). Using combinations of either or both omnivores on different plant genotypes, we calculated the contribution of c onsumptive (eggs predated) and n onc onsumptive (fewer eggs laid) effect on beetle fitness, including a prey density‐independent measure (c:nc ratio). We found that larger clutches increase egg survival in presence of the omnivore not immediately consuming all eggs. However, rather than lowering mean, the beetles generally responded with a frequency shift toward smaller clutches. However, female beetles decreased mean and changed clutch size frequency with decreasing plant quality, therefore reducing intraspecific exploitative competition among larvae. More importantly, variation in host plant quality (to omnivore) led to nonconsumptive effects between one‐third and twice as strong as the consumptive effects. Increased egg consumption on plants less suitable to the omnivore may therefore be accompanied by less searching and disturbing the beetle, representing a “cost” to the indirect plant defense in the form of a lower nonconsumptive effect. Many predators are omnivores and altering c:nc ratios (with egg retention as the most direct link to prey fitness) via plant quality and hunting behavior should be fundamental to advance ecological theory and applications. Furthermore, exploring modulation of fitness traits by bottom‐up and top‐down effects will help to explain how and why species aggregate.  相似文献   

12.
Indirect risk effects of predators on prey behavior can have more of an impact on prey populations than direct consumptive effects. Predation risk can elicit more vigilance behavior in prey, reducing the amount of time available for other activities, such as foraging, which could potentially reduce foraging efficiency. Understanding the conditions associated with predation risk and the specific effects predation risk have on prey behavior is important because it has direct influences on the profitability of food items found under various conditions and states of the forager. The goals of this study were to assess how ducks perceived predation risk in various habitat types and how strongly perceived risk versus energetic demand affected foraging behavior. We manipulated food abundance in different wetland types in Illinois, USA to reduce confounding between food abundance and vegetation structure. We conducted focal‐animal behavioral samples on five duck species in treatment and control plots and used generalized linear mixed‐effects models to compare the effects of vegetation structure versus other factors on the intensity with which ducks fed and the duration of feeding stints. Mallards fed more intensively and, along with blue‐winged teal, used longer feeding stints in open habitats, consistent with the hypothesis that limited visibility was perceived to have a greater predation risk than unlimited visibility. The species temporally nearest to nesting, wood ducks, were willing to take more risks for a greater food reward, consistent with an increase in a marginal value of energy as they approached nesting. Our results indicate that some duck species value energy differently based on the surrounding vegetation structure and density. Furthermore, increases in the marginal value of energy can be more influential than perceived risk in shaping foraging behavior patterns. Based on these findings, we conclude that the value of various food items is not solely determined by energy contained in the item but by conditions in which it is found and the state of the forager.  相似文献   

13.
A major cause of reproductive failure in birds is nest predation. Predation risk depends on predator type, as predators vary in their ecology and sensory modalities (e.g. visual vs. olfactory). Snakes (generally olfactory predators) are a major nest predator for small birds, with predation strongly associated with higher temperatures. We investigated nest survival in a ground-nesting alpine species, the Cape Rockjumper Chaetops frenatus, endemic to alpine fynbos in southwestern South Africa. We collected 3 years of nest data, testing whether nest survival was related to (1) habitat stage (early post-fire vs. late post-fire habitat, ≤ 3 and > 3 years since fire respectively), (2) nest concealment and (3) temperature. We found that nests had better survival at lower temperatures, with snake predation (our main source of predation) increasing in higher temperatures.  相似文献   

14.
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.  相似文献   

15.
Mammals have evolved several morphological and behavioral adaptations to reduce the risk of predation, but we know little about the ecological factors that favor their evolution. For example, some mammalian carnivores have the ability to spray noxious anal secretions in defense, whereas other species lack such weaponry but may instead rely on collective vigilance characteristic of cohesive social groups. Using extensive natural history data on 181 species in the order Carnivora, we created a new estimate of potential predation risk from mammals and birds of prey and used comparative phylogenetic methods to assess how different sources of predation risk and other ecological variables influence the evolution of either noxious weaponry or sociality in this taxon. We demonstrate that the evolution of enhanced spraying ability is favored by increased predation risk from other mammals and by nocturnality, but the evolution of sociality is favored by increased predation risk from birds of prey and by diurnality, which may allow for enhanced early visual detection. These results suggest that noxious defenses and sociality are alternative antipredator strategies targeting different predator guilds under different lighting conditions.  相似文献   

16.
Predation is a strong selective pressure generating morphological, physiological and behavioural responses in organisms. As predation risk is often higher during juvenile stages, antipredator defences expressed early in life are paramount to survival. Maternal effects are an efficient pathway to produce such defences. We investigated whether maternal exposure to predator cues during gestation affected juvenile morphology, behaviour and dispersal in common lizards (Zootoca vivipara). We exposed 21 gravid females to saurophagous snake cues for one month while 21 females remained unexposed (i.e. control). We measured body size, preferred temperature and activity level for each neonate, and released them into semi-natural enclosures connected to corridors in order to measure dispersal. Offspring from exposed mothers grew longer tails, selected lower temperatures and dispersed thrice more than offspring from unexposed mothers. Because both tail autotomy and altered thermoregulatory behaviour are common antipredator tactics in lizards, these results suggest that mothers adjusted offspring phenotype to risky natal environments (tail length) or increased risk avoidance (dispersal). Although maternal effects can be passive consequences of maternal stress, our results strongly militate for them to be an adaptive antipredator response that may increase offspring survival prospects.  相似文献   

17.
Dangerous prey and daring predators: a review   总被引:1,自引:0,他引:1  
How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk‐taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists.  相似文献   

18.
The ‘human shield hypothesis’ describes the situation where prey species use humans as shield from natural predation. We tested the human shield hypothesis in a population of mountain nyala (Tragelaphus buxtoni) subjected to predation from the nocturnal spotted hyena (Crocuta Crocuta) in the Bale Mountains National Park, Ethiopia by radio‐marking 15 mountain nyala (seven females and eight males) and tracking them for up to 2 yr. Occurrence of hyena estimated by faecal transects decreased close to human settlements substantiating the occurrence of a zone with lower risk of hyena predation. The diurnal pattern in the average distance between mountain nyala relocations and human settlements was consistent with the human shield hypothesis with significantly shorter distances during night (when exposed to predation) than during day. However, mountain nyala showed large individual heterogeneity in use of human shields. While nearly all individuals occasionally moved out of the park to human settlements during night, the frequency of such excursions varied from 0% to 71%. The excursions occurred year‐round and were not driven by seasonal access to crops. We have previously demonstrated a strong negative effect of humans on the large‐scale distribution pattern of mountain nyala. The use of human shield documented here is indicative of a positive small‐scale effect of humans. Our study thus supports the view that the effect of human–wildlife interactions can be scale‐dependent.  相似文献   

19.
Many animals assess their risk of predation by listening to and evaluating predators' vocalizations. We reviewed the literature to draw generalizations about predator discrimination abilities, the retention of these abilities over evolutionary time, and the potential underlying proximate mechanisms responsible for discrimination. Broadly, we found that some prey possess an ability to respond to a predator after having been evolutionarily isolated from a specific predator (i.e., predators are allopatric) and that some prey are predisposed to respond to certain types of predators that they coevolved with but without having ecological experience. However, these types of studies are lacking, and relatively, few studies have examined predator discrimination abilities in ungulates. To begin addressing these knowledge gaps, we performed field experiments on Mule deer (Odocoileus hemionus) in which we investigated the ability of deer to discriminate among familiar predators [coyotes (Canis latrans) and mountain lions (Puma concolor)] and an evolutionary relevant predator with which deer have had no recent exposure [locally extinct wolves (Canis lupus)]. We found that Mule deer respond to and discriminate among predators based on predator vocalizations and have retained an ability to respond to wolves that have been extinct from the study area since the early 20th century. Previous playback studies have shown that responses vary among human‐habituated and non‐habituated populations and differ according to human proximity. Deer greater than 0.5 km from human residences allocated more time to heightened responses both before and after stimulus playback. Our findings may help predict how prey–predator interactions may change as a result of the recovering wolf population with a basis in ecological and evolutionary experience in predator discrimination and desensitization.  相似文献   

20.
In inverted biomass pyramids (IBPs) prey are outnumbered by their predators when measured by biomass. We investigate how prey should behave in the face of danger from higher predator biomass, and how anti-predator behavior (in the form of vigilance) can, in turn, affect the predator–prey system. In this study, we incorporate anti-predator behaviors into a Lotka–Volterra predator–prey model in the form of fixed and facultative vigilance. Facultative vigilance models behavior as a dynamic foraging game, allowing us to assess optimal behavioral responses in the context of IBPs using a dynamical fitness optimization approach. We model vigilance as a tradeoff between safety and either the prey's maximum growth rate or its carrying capacity. We assess the population dynamics of predators and prey with fear responses, and investigate the role fear plays on trophic structure. We found that the ecology of fear plays an important role in predator–prey systems, impacting trophic structure and the occurrence of IBPs. Fixed vigilance works against IBP structure by always reducing the predator–prey biomass ratio at equilibrium with increasing levels of vigilance. Facultative vigilance can actually promote IBPs, as prey can now adjust their vigilance levels to cope with increased predation and the costs associated with vigilance. This is especially true when the effectiveness of vigilance is low and predators are very lethal. In general, these trends are true whether the costs of vigilance are felt on the prey's maximum growth rate or its carrying capacity. Just as the ecology of fear, when first introduced, was used to explain why top carnivores are rare in terrestrial systems, it can also be used to understand how big fierce predators can be common in IBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号