首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Wang  Qing  Ye  Jianzhong  Fang  Daiqiong  Lv  Longxian  Wu  Wenrui  Shi  Ding  Li  Yating  Yang  Liya  Bian  Xiaoyuan  Wu  Jingjing  Jiang  Xianwan  Wang  Kaicen  Wang  Qiangqiang  Hodson  Mark P.  Thibaut  Lo&#;c M.  Ho  Joshua W. K.  Giannoulatou  Eleni  Li  Lanjuan 《BMC microbiology》2020,20(1):1-14
Actinomyces oris is an early colonizer and has two types of fimbriae on its cell surface, type 1 fimbriae (FimP and FimQ) and type 2 fimbriae (FimA and FimB), which contribute to the attachment and coaggregation with other bacteria and the formation of biofilm on the tooth surface, respectively. Short-chain fatty acids (SCFAs) are metabolic products of oral bacteria including A. oris and regulate pH in dental plaques. To clarify the relationship between SCFAs and fimbrillins, effects of SCFAs on the initial attachment and colonization (INAC) assay using A. oris wild type and fimbriae mutants was investigated. INAC assays using A. oris MG1 strain cells were performed with SCFAs (acetic, butyric, propionic, valeric and lactic acids) or a mixture of them on human saliva-coated 6-well plates incubated in TSB with 0.25% sucrose for 1 h. The INAC was assessed by staining live and dead cells that were visualized with a confocal microscope. Among the SCFAs, acetic, butyric and propionic acids and a mixture of acetic, butyric and propionic acids induced the type 1 and type 2 fimbriae-dependent and independent INAC by live A. oris, but these cells did not interact with streptococci. The main effects might be dependent on the levels of the non-ionized acid forms of the SCFAs in acidic stress conditions. GroEL was also found to be a contributor to the FimA-independent INAC by live A. oris cells stimulated with non-ionized acid. SCFAs affect the INAC-associated activities of the A. oris fimbrillins and non-fimbrillins during ionized and non-ionized acid formations in the form of co-culturing with other bacteria in the dental plaque but not impact the interaction of A. oris with streptococci.  相似文献   

2.
By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.  相似文献   

3.
Two types of adhesive fimbriae are expressed by Actinomyces; however, the architecture and the mechanism of assembly of these structures remain poorly understood. In this study we characterized two fimbrial gene clusters present in the genome of Actinomyces naeslundii strain MG-1. By using immunoelectron microscopy and biochemical analysis, we showed that the fimQ-fimP-srtC1-fimR gene cluster encodes a fimbrial structure (designated type 1) that contains a major subunit, FimP, forming the shaft and a minor subunit, FimQ, located primarily at the tip. Similarly, the fimB-fimA-srtC2 gene cluster encodes a distinct fimbrial structure (designated type 2) composed of a shaft protein, FimA, and a tip protein, FimB. By using allelic exchange, we constructed an in-frame deletion mutant that lacks the SrtC2 sortase. This mutant produces abundant type 1 fimbriae and expresses the monomeric FimA and FimB proteins, but it does not assemble type 2 fimbriae. Thus, SrtC2 is a fimbria-specific sortase that is essential for assembly of the type 2 fimbriae. Together, our experiments pave the way for several lines of molecular investigation that are necessary to elucidate the fimbrial assembly pathways in Actinomyces and their function in the pathogenesis of different biofilm-related oral diseases.  相似文献   

4.
Type I fimbriae commonly expressed by Escherichia coli mediate initial attachment of bacteria to host epithelial cells. However, the role of type I fimbriae in the adherence of porcine enterotoxigenic E. coli (ETEC) to host receptors is unclear. In this study, we examined the role of type I fimbriae in the adherence and biofilm formation of F18ac+ ETEC by constructing mutant strains with deletion of type I fimbrial major subunit (fimA) or minor subunit (fimH). The data indicated that the isogenic ΔfimA and ΔfimH mutants showed significantly lower adherence to porcine epithelial IPEC-1 and IPEC-J2 cells as compared to the F18ac+ ETEC parent strain. In addition, the adherence of F18ac+ ETEC to both cell lines was blocked by the presence of 0.5% D-mannose in the cell culture medium. In addition, both mutant strains impaired their ability to form biofilm in vitro. Interestingly, the deletion of fimA or fimH genes resulted in remarkable up-regulation of the expression of adhesin involved in diffuse adherence (AIDA-I). These results indicated that type I fimbriae may be required for efficient adherence of F18ac+ ETEC to pig epithelial cells and, perhaps, biofilm formation.  相似文献   

5.
Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria.  相似文献   

6.
Type 1 fimbriae of enterobacteria are heteropolymeric organelles of adhesion composed of FimH, a mannose-binding lectin, and a shaft composed primarily of FimA. We compared the binding activities of recombinant clones expressing type 1 fimbriae from Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium for gut and uroepithelial cells and for various soluble mannosylated proteins. Each fimbria was characterized by its capacity to bind particular epithelial cells and to aggregate mannoproteins. However, when each respective FimH subunit was cloned and expressed in the absence of its shaft as a fusion protein with MalE, each FimH bound a wide range of mannose-containing compounds. In addition, we found that expression of FimH on a heterologous fimbrial shaft, e.g. K. pneumoniae FimH on the E. coli fimbrial shaft or vice versa, altered the binding specificity of FimH such that it closely resembled that of the native heterologous type 1 fimbriae. Furthermore, attachment to and invasion of bladder epithelial cells, which were mediated much better by native E. coli type 1 fimbriae compared with native K. pneumoniae type 1 fimbriae, were found to be dependent on the background of the fimbrial shaft (E. coli versus K. pneumoniae) rather than the background of the FimH expressed. Thus, the distinct binding specificities of different enterobacterial type 1 fimbriae cannot be ascribed solely to the primary structure of their respective FimH subunits, but are also modulated by the fimbrial shaft on which each FimH subunit is presented, possibly through conformational constraints imposed on FimH by the fimbrial shaft. The capacity of type 1 fimbrial shafts to modulate the tissue tropism of different enterobacterial species represents a novel function for these highly organized structures.  相似文献   

7.
Bacterial fimbriae are an important pathogenic factor. It has been demonstrated that fimbrial protein encoded by fimA gene (FimA fimbriae) of Porphyromonas gingivalis not only contributes to the abilities of bacterial adhesion and invasion to host cells, but also strongly stimulates host innate immune responses. However, FimA fimbriae separated from P. gingivalis ATCC 33277 using a gentle procedure showed very weak proinflammatory activity compared with previous reports. Therefore, in the present study, biological characteristics of FimA fimbriae were further analyzed in terms of proinflammatory activity in macrophages. Macrophages differentiated from THP-1 cells were stimulated with native, heat-denatured, or either proteinase- or lipoprotein lipase-treated FimA fimbriae of P. gingivalis ATCC 33277. Stimulating activities of these FimA fimbriae were evaluated by TNF-α-inducing activity in the macrophages. To clarify the mode of action of FimA fimbriae, anti-Toll-like receptor (TLR) 2 blocking antibody was added prior to stimulation. Weak stimulatory activity of native FimA fimbriae was enhanced by heat treatment and low-dose proteinase K treatment. Higher dose of proteinase K treatment abrogated this up-regulation. The activity of treated FimA fimbriae was suppressed by anti-TLR2 antibody, and more substantially by lipoprotein lipase treatment. These results suggest that lipoproteins or lipopeptides associated with FimA fimbriae could at least in part account for signaling via TLR2 and subsequent TNF-α production in macrophages.  相似文献   

8.
Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface components that mediate coaggregation interactions were used as direct immunofluorescent probes in conjunction with laser confocal microscopy to determine the distribution and spatial arrangement of bacteria within intact human plaque formed on retrievable enamel chips. In intrageneric coaggregation, streptococci such as Streptococcus gordonii DL1 recognize receptor polysaccharides (RPS) borne on other streptococci such as Streptococcus oralis 34. To define potentially interactive subsets of streptococci in the developing plaque, an antibody against RPS (anti-RPS) was used together with an antibody against S. gordonii DL1 (anti-DL1). These antibodies reacted primarily with single cells in 4-h-old plaque and with mixed-species microcolonies in 8-h-old plaque. Anti-RPS-reactive bacteria frequently formed microcolonies with anti-DL1-reactive bacteria and with other bacteria distinguished by general nucleic acid stains. In intergeneric coaggregation between streptococci and actinomyces, type 2 fimbriae of actinomyces recognize RPS on the streptococci. Cells reactive with antibody against type 2 fimbriae of Actinomyces naeslundii T14V (anti-type-2) were much less frequent than either subset of streptococci. However, bacteria reactive with anti-type-2 were seen in intimate association with anti-RPS-reactive cells. These results are the first direct demonstration of coaggregation-mediated interactions during initial plaque accumulation in vivo. Further, these results demonstrate the spatiotemporal development and prevalence of mixed-species communities in early dental plaque.  相似文献   

9.
Type 1 fimbria-mediated adherence to HEp-2 cells by two strains of Salmonella enterica serovar Typhimurium was found to be different. Although both strains exhibited a strong mannose-sensitive haemagglutination reaction with guinea pig erythrocytes, characteristic of the expression of type 1 fimbriae, only one of the strains adhered in large numbers to HEp-2 cells. Characterization of the fimH genes, encoding the fimbrial adhesins, indicated two allelic variants. Using fimH mutants of the two strains it was possible to demonstrate that binding to HEp-2 cells was associated with the presence of one of the alleles regardless of the host strain. Therefore, this differential binding was not a function of the type I fimbrial shaft or the presence of other types of fimbriae produced by one strain but not the other. These observations may explain the differences in HEp-2 binding by type 1 fimbriate strains of Salmonella previously reported by several groups. Also, our studies demonstrate that the FimH adhesin can influence the efficiency of biofilm formation on HEp-2 cells using once-flow-through continuous culture conditions. The formation of biofilms on eukaryotic cells using this procedure is more likely to represent those conditions found in the intestinal tract than conditions using batch culture techniques to investigate adherence and biofilm formation. Indeed, the increased efficiency of biofilm formation in the murine intestinal tract confirmed the role of one of the fimH alleles in this process.  相似文献   

10.

Background  

Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA) and short (Mfa) fimbriae as well as gingipains comprised of arginine-specific (Rgp) and lysine-specific (Kgp) cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms.  相似文献   

11.
Escherichia coli was used as a model to study initial adhesion and early biofilm development to abiotic surface. Tn10 insertion mutants of Escherichia coli K-12 W3110 were selected for altered abilities to adhere to a polystyrene surface. Seven insertion mutants that showed a decrease in adhesion harbored insertions in genes involved in lipopolysaccharide (LPS) core biosynthesis. Two insertions were located in the rfaG gene, two in the rfaP gene, and three in the galU gene. These adhesion mutants were found to exhibit a deep-rough phenotype and to be reduced, at different levels, in type 1 fimbriae production and motility. The loss of adhesion exhibited by these mutants was associated with either the affected type 1 fimbriae production and/or the dysfunctional motility. Apart from the pleiotropic effect of the mutations affecting LPS on type 1 fimbriae and flagella biosynthesis, no evidence for an involvement of the LPS itself in adhesion to polystyrene surface could be observed. Received: 1 December 1998 / Accepted: 3 April 1999  相似文献   

12.
13.
Porphyromonas gingivalis is strongly implicated in adult periodontitis. This oral pathogen expresses adhesive filamentous appendages, known as fimbriae, which constitute one of its major virulence factors. Fimbriae are composed of polymerized fimbrillin (FimA) subunits and play an indispensable role in the ability of P. gingivalis to colonize and invade periodontal tissue and to induce alveolar bone loss. The virulence potential of fimbriae is attributable to their capacity to interact with various dental or epithelial substrates, extracellular matrix proteins, other bacteria, and host immune cells. It has been puzzling whether the multifunctional adhesive ability of fimbriae results from multiple adhesion epitopes specific for each receptor, or whether fimbriae contain versatile structural motifs that are recognizable by multiple receptors. This review summarizes peptide mapping studies that have defined functional epitopes of P. gingivalis fimbriae. Available evidence suggests that the binding of fimbriae to various receptors generally involves specific amino acid sequences of the FimA subunit, although the same FimA peptide may occasionally recognize different receptors. Moreover, in cases where distinct FimA peptides interact with the same receptor, the peptides involved share common sequences. It therefore appears that the promiscuous binding reactivity of P. gingivalis fimbriae is attributable to a multitude of adhesion epitopes which however share minimal binding elements, although the overall hydrophobicity and polymeric nature of fimbriae may significantly enhance the avidity of binding interactions. Peptide mapping of fimbriae is significant also for translational purposes, such as for development of subunit vaccines that contain defined immunogenic and functionally important epitopes and for identification of peptides that can competitively inhibit virulence activities of P. gingivalis fimbriae. Studies performed in the author’s lab and cited in this review were supported by U.S. Public Health Service Grant DE015254 from the NIDCR, National Institutes of Health.  相似文献   

14.
We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.  相似文献   

15.
We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.  相似文献   

16.

Background  

Actinomyces naeslundii genospecies 1 and 2 express type-2 fimbriae (FimA subunit polymers) with variant Galβ binding specificities and Actinomyces odontolyticus a sialic acid specificity to colonize different oral surfaces. However, the fimbrial nature of the sialic acid binding property and sequence information about FimA proteins from multiple strains are lacking.  相似文献   

17.
Streptococcus sanguis FW213 carries peritrichous fimbriae (216±28 nm long) and 6 mutants derived from it lack fimbriae but carry peritrichous fibrils with a mean length of 77–4 + 3–9 nm. Both wild type strain and mutants have a ruthenium red staining layer (≤ 14.5±2.9 nm thick) external to the cell wall at the base of the fibrils and fimbriae. The thickness of this layer is strain dependent. Ruthenium red also stains extracellular masses of material, probably extracellular polysaccharide, but not the fimbriae. S. sanguis strain FW 213 adheres to saliva‐coated hydroxyapatite and buccal epithelial cells and is not aggregated by saliva. The 6 non‐fimbriate mutants of FW213 adhered poorly to hydroxyapatite coated in heated whole saliva (S‐SHA) but 3/6 mutants adhered to the same extent or higher than the wild type to S‐SHA coated in unheated saliva, indicating that strain FW213 may carry a non‐fimbriate adhesin and that whole saliva contains a heat sensitive adhesin. All the mutants had a significantly thinner ruthenium red staining layer (RRL) external to the cell wall than the wild type strain FW213, while the cell surface hydrophobicity showed that the mutants were all less hydrophobic than the wild type FW213.  相似文献   

18.
LeuO, the regulator of leucine biosynthesis operon of Escherichia coli, is involved in the regulation of as yet unspecified genes affecting the stress response and pathogenesis expression. To get insights into the regulatory role(s) of LeuO, Genomic SELEX screening has been performed to identify the whole set of its regulation targets. A total of 140 LeuO‐binding sites were identified on the E. coli genome, of which as many as 133 (95%) were found to contain the binding sites of H‐NS, the universal silencer of stress‐response genes, supporting the concept that LeuO plays an antagonistic role with anti‐silencing activity. Western blot analysis indicated that H‐NS predominates in growing phase; however, after prolonged culture for 1 week, H‐NS decreased instead LeuO increased, supporting the anti‐silencing role of LeuO. In concert with this model, a set of stress‐response genes including cryptic chaperone/usher‐type fimbriae operons are under the control of antagonistic interplay between LeuO and H‐NS. Confocal laser scanning microscopic observation in flow‐chambers showed that the mutants lacking leuO and some fimbriae genes are defective in biofilm formation or form altered biofilm architecture. Taken together we propose that LeuO is a major player in antagonistic interplay against the universal silencer H‐NS.  相似文献   

19.
The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new Y ehD f imbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.  相似文献   

20.
Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine‐responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co‐ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号