首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.  相似文献   

3.
Aims This study explores the patterns of niche differentiation in a group of seven closely related columbines (genus Aquilegia, Ranunculaceae) from the Iberian Peninsula. Populations of these columbines are subject to complex patterns of divergent selection across environments, which partly explain the taxonomic structure of the group. This suggests the hypothesis that niche divergence must have occurred along the process of diversification of the group.Methods We used MaxEnt to build environmental niche models of seven subspecies belonging to the three species of Aquilegia present in the Iberian Peninsula. From these models, we compared the environmental niches through two different approaches: ENMtools and multivariate methods.Important findings MaxEnt distributions conformed closely to the actual distribution of the study taxa. ENMtools methods failed to uncover any clear patterns of niche differentiation or conservatism in Iberian columbines. Multivariate analyses indicate the existence of differentiation along altitudinal gradients and along a gradient of climatic conditions determined by the summer precipitation and temperatures. However, climatic conditions related to winter temperature and precipitation, as well as soil properties, were equally likely to show conservatism or divergence. The complex patterns of niche evolution we found suggest that Iberian Columbines have not been significantly constrained by forces of niche conservatism, so they could respond adaptively to the fast and profound climate changes in the Iberian Peninsula through the glacial cycles of the Pleistocene.  相似文献   

4.
The prediction that variation in species morphology is related to environmental features has long been of interest to ecologists and evolutionary biologists. Many studies have demonstrated strong associations between morphological traits and local habitat characteristics, but few have considered the extent to which morphological traits may be associated with environmental features across broad geographic areas. Here, we use morphological, environmental and phylogenetic data compiled from Phrynosoma species to examine morphological and climatic variation across the geographic ranges of these species in an evolutionary context. We find significant phylogenetic signal in species’ environmental niches, but not in morphological traits. Furthermore, we demonstrate a significant correlation between species’ environmental niches and morphological traits when phylogenetic history is accounted for in the analysis. Our results suggest the importance of climatic variables in influencing morphological variation among species, and have implications for understanding how species distributions are constrained by environmental variation.  相似文献   

5.
6.
7.
Analysis of ecological characters on phylogenetic frameworks has only recently appeared in the literature, with several studies addressing patterns of niche evolution, generally over relatively recent time frames. In the present study, we examined patterns of niche evolution for a broad radiation of American blackbird species (Family Icteridae), exploring more deeply into phylogenetic history. Within each of three major blackbird lineages, overlap of ecological niches in principal components analysis transformed environmental space varied from high to none. Comparative phylogenetic analyses of ecological niche characteristics showed a general pattern of niche conservatism over evolutionary time, with differing degrees of innovation among lineages. Although blackbird niches were evolutionarily plastic over differing periods of time, they diverged within a limited set of ecological possibilities, resulting in examples of niche convergence among extant blackbird species. Hence, an understanding of the patterns of ecological niche evolution on broad phylogenetic scales sets the stage for framing questions of evolutionary causation, historical biogeography, and ancestral ecological characteristics more appropriately.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 869–878.  相似文献   

8.
Genome size variation in plants is thought to be correlatedwith cytological, physiological, or ecological characters. However,conclusions drawn in several studies were often contradictory.To analyze nuclear genome size evolution in a phylogenetic framework,DNA contents of 134 accessions, representing all but one speciesof the barley genus Hordeum L., were measured by flow cytometry.The 2C DNA contents were in a range from 6.85 to 10.67 pg indiploids (2n = 14) and reached up to 29.85 pg in hexaploid species(2n = 42). The smallest genomes were found in taxa from theNew World, which became secondarily annual, whereas the largestdiploid genomes occur in Eurasian annuals. Genome sizes of polyploidtaxa equaled mostly the added sizes of their proposed progenitorsor were slightly (1% to 5%) smaller. The analysis of ancestralgenome sizes on the base of the phylogeny of the genus revealedlineages with decreasing and with increasing genome sizes. Correlationsof intraspecific genome size variation with the length of vegetationperiod were found in H. marinum populations from Western Europebut were not significant within two species from South America.On a higher taxonomical level (i.e., for species groups or theentire genus), environmental correlations were absent. Thiscould mostly be attributed to the superimposition of life-formchanges and phylogenetic constraints, which conceal ecogeographicalcorrelations.  相似文献   

9.
10.
The Hordeum marinum species group consists of two annual grasses of western Eurasian saline meadows or marshes. The two grasses split in the Quaternary about two million years ago. Hordeum marinum and the diploid of Hordeum gussoneanum (2x) co-occur throughout the Mediterranean basin, while the autotetraploid cytotype of H. gussoneanum (4x) overlaps with its diploid progenitor geographically only in the utmost Eastern Mediterranean, extending from there eastwards into Asia. Using chloroplast sequences of the trnL-F region, six newly developed chloroplast microsatellite loci, ecological predictive models based on climate data, and the present geographical distribution of the two species we analysed differentiation processes in the H. marinum group. The chloroplast data indicated clear differences in the history of both species. For H. marinum we found a subdivision between genetically variable populations from the Iberian Peninsula and the more uniform populations from the remaining Mediterranean. As an explanation, we assume Pleistocene fragmentation of an earlier widespread population and survival in an Iberian and a Central Mediterranean glacial refuge. Chloroplast variation was completely absent within the cytotypes of H. gussoneanum, indicating a severe and recent genetic bottleneck. Due to this lack of chloroplast variation only the combination of ecological habitat modelling with molecular data analyses allowed conclusions about the history of this taxon. The distribution areas of the two cytotypes of H. gussoneanum overlap today in parts of Turkey, indicating an area with similar climate conditions during polyploid formation. However, after its origin the polyploid cytotype underwent a pronounced ecological shift, compared to its diploid progenitor, allowing it to colonize mountainous inland habitats between the Mediterranean basin and Afghanistan. The extant sympatric occurrence of H. marinum and H. gussoneanum 2x in the Mediterranean region is interpreted as a result of secondary contact after fast Holocene range expansion out of different ice age refugia.  相似文献   

11.
To investigate the evolutionary and biogeographical history of Peromyscus keeni and P. maniculatus within the coastal forest ecosystem of the Pacific Northwest of North America, we sampled 128 individuals from 43 localities from southeastern Alaska through Oregon. We analysed mitochondrial DNA variation using DNA sequence data from the mitochondrial cytochrome-b (cyt-b) gene and control region, and we found two distinct clades consistent with the morphological designation of the two species. The sequence divergence between the two clades was 0.0484 substitutions per site for cyt-b and 0.0396 for the control region, suggesting that divergence of the two clades occurred during the middle to late Pleistocene. We also examined the historical demography of the two clades using stepwise and exponential expansion models, both of which indicated recent rapid population growth. Furthermore, using the program migrate we found evidence of migration from populations north of the Fraser River (British Columbia) to the south in both clades. This study demonstrates the utility of these model-based demographic methods in illuminating the evolutionary and biogegographic history of natural systems.  相似文献   

12.
Psammochloa villosa is an ecologically important desert grass that occurs in the Inner Mongolian Plateau where it is frequently the dominant species and is involved in sand stabilization and wind breaking. We sought to generate a preliminary demographic framework for P. villosa to support the future studies of this species, its conservation, and sustainable utilization. To accomplish this, we characterized the genetic diversity and structure of 210 individuals from 43 natural populations of P. villosa using amplified fragment length polymorphism (AFLP) markers. We obtained 1,728 well‐defined amplified bands from eight pairs of primers, of which 1,654 bands (95.7%) were polymorphic. Results obtained from the AFLPs suggested effective alleles among populations of 1.32, a Nei''s standard genetic distance value of 0.206, a Shannon index of 0.332, a coefficient of gene differentiation (G ST) of 0.469, and a gene flow parameter (Nm) of 0.576. All these values indicate that there is abundant genetic diversity in P. villosa, but limited gene flow. An analysis of molecular variance (AMOVA) showed that genetic variation mainly exists within populations (64.2%), and we found that the most genetically similar populations were often not geographically adjacent. Thus, this suggests that the mechanisms of gene flow are surprisingly complex in this species and may occur over long distances. In addition, we predicted the distribution dynamics of P. villosa based on the spatial distribution modeling and found that its range has contracted continuously since the last interglacial period. We speculate that dry, cold climates have been critical in determining the geographic distribution of P. villosa during the Quaternary period. Our study provides new insights into the population genetics and evolutionary history of P. villosa in the Inner Mongolian Plateau and provides a resource that can be used to design in situ conservation actions and prioritize sustainable utilization.  相似文献   

13.
Allozymic variation in proteins encoded by 22 loci was analyzed electrophoretically in 278 individual plants of wild barley,Hordeum spontaneum, the progenitor of cultivated barley, in four 100 meter transects, in Israel, each equally subdivided into basalt and terra rossa soil types. Significant differentiation according to soil was found in 9 alleles. Our results suggest that allozyme polymorphisms in wild barley are at least partly adaptive, and differentiate by edaphic natural selection rather than by stochastic processes, and/or neutrality of allozymic variants.  相似文献   

14.
The studies of climatic‐niche shifts over evolutionary time accompanied by key morphological innovations have attracted the interest of many researchers recently. We applied ecological niche models (ENMs), ordination method (environment principal component analyses; PCA‐env), combined phylogenetic comparative methods (PCMs), and phylogenetic generalized least squares (PGLS) regression methods to analyze the realized niche dynamics and correspondingly key morphological innovations across clades within Scutiger boulengeri throughout their distributions in Qinghai–Tibet Plateau (QTP) margins of China. Our results show there are six clades in S. boulengeri and obvious niche divergences caused by niche expansion in three clades. Moreover, in our system, niche expansion is more popular than niche unfilling into novel environmental conditions. Annual mean temperature, annual precipitation, and precipitation of driest month may contribute to such a shift. In addition, we identified several key climatic factors and morphological traits that tend to be associated with niche expansion in S. boulengeri clades correspondingly. We found phenotypic plasticity [i.e., length of lower arm and hand (LAHL), hind‐limb length (HLL), and foot length (FL)] and evolutionary changes [i.e., snout–vent length (SVL)] may together contribute to niche expansion toward adapting novel niche, which provides us a potential pattern of how a colonizing toad might seed a novel habitat to begin the process of speciation and finally adaptive radiation. For these reasons, persistent phylogeographic divisions and accompanying divergences in niche occupancy and morphological adaption suggest that for future studies, distinct genetic structure and morphological changes corresponding to each genetic clade should be included in modeling niche evolution dynamics, but not just constructed at the species level.  相似文献   

15.
Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome‐wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north–south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.  相似文献   

16.
Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour.  相似文献   

17.
Aim Various techniques model a species’ niche and potential distribution by comparing the environmental conditions of occurrence localities with those of the overall study region (via a background or pseudoabsence sample). Here, we examine how changes in the extent of the study region (ignored or under‐appreciated in most studies) affect models of two rodents, Nephelomys caracolus and Nephelomys meridensis. Location North‐central South America. Methods We used Maxent to model the species' potential distributions via two methods of defining the study region. In Method 1 (typical of most studies to date), we calibrated the model in a large study region that included the ranges of both species. In Method 2, we calibrated the model using a smaller study region surrounding the localities of the focal species, and then applied it to the larger region. Because the study region of Method 1 is likely to include areas of suitable conditions that are unoccupied because of dispersal limitations and/or biotic interactions, this approach is prone to overfitting to conditions found near the occupied localities. In contrast, Method 2 should avoid such problems but may require further assumptions (‘clamping’ in Maxent ) to make predictions for areas with environmental conditions beyond those found in the smaller study region. For each method, we calculated several measures of geographic interpredictivity between predictions for the species (cross‐species AUC, cross‐species omission rate, and proportional geographic overlap). Results Compared with Method 1, Method 2 revealed a larger predicted area for each species, less concentrated around known localities (especially for N. caracolus). It also led to higher cross‐species AUC values, lower cross‐species omission rates and higher proportions of geographic overlap. Clamping was minimal and occurred primarily in regions unlikely to be suitable. Main conclusions Method 2 led to more realistic predictions and higher estimates of niche conservatism. Conclusions reached by many studies depend on the selection of an appropriate study region. Although detailed information regarding dispersal limitations and/or biotic interactions will typically be difficult to obtain, consideration of coarse distributional patterns, topography and vegetational zones often should permit delimitation of a much more reasonable study region than the extremely large ones currently in common use.  相似文献   

18.
19.
The genus Hypochaeris has a recent evolutionary history caused by long‐distance dispersal in conjunction with adaptive radiation in the South American continent. Hypochaeris lutea is a perennial herb that grows mostly at altitudes of around 1000 m in cold swamps of the southern regions of Brazil. We investigated the amplified fragment length polymorphism (AFLP) in 270 individuals representing 11 Brazilian populations of H. lutea to elucidate the population genetic structure of this species. The frequencies of polymorphic loci and gene diversity ranged from 83.42% to 91.66% and from 0.26 to 0.34, respectively. Analysis of molecular variance revealed that most of the genetic variability was found within (76.67%) rather than among (23.3%) populations, agreeing with the pattern of genetic distribution within and among populations observed in other allogamous species of Hypochaeris. A Mantel test showed no correlation between genetic and geographic distances when all populations were considered. Simulations performed using a Bayesian approach consistently identified two clusters with different admixture proportions of individuals, as also revealed by a UPGMA dendrogram of populations. The pattern of genetic structure observed in H. lutea is consistent with a process of successive colonization events by long‐distance dispersal resembling the rapid and recent radiation that has been proposed to explain the origin of the South American species of Hypochaeris.  相似文献   

20.
In many temperate regions, ice ages promoted range contractions into refugia resulting in divergence (and potentially speciation), while warmer periods led to range expansions and hybridization. However, the impact these climatic oscillations had in many parts of the tropics remains elusive. Here, we investigate this issue using genome sequences of three pig (Sus) species, two of which are found on islands of the Sunda‐shelf shallow seas in Island South‐East Asia (ISEA). A previous study revealed signatures of interspecific admixture between these Sus species (Genome biology, 14 , 2013, R107). However, the timing, directionality and extent of this admixture remain unknown. Here, we use a likelihood‐based model comparison to more finely resolve this admixture history and test whether it was mediated by humans or occurred naturally. Our analyses suggest that interspecific admixture between Sunda‐shelf species was most likely asymmetric and occurred long before the arrival of humans in the region. More precisely, we show that these species diverged during the late Pliocene but around 23% of their genomes have been affected by admixture during the later Pleistocene climatic transition. In addition, we show that our method provides a significant improvement over D‐statistics which are uninformative about the direction of admixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号