首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast‐targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS‐transgenic lines (control) or wild‐type plants. The gibberellin levels in HaGGPS‐transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS‐transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS‐expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.  相似文献   

2.
3.
Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.  相似文献   

4.
Flowering of Nicotiana tabacum cv Xhanti depends on gibberellins because gibberellin-deficient plants, due to overexpression of a gibberellin 2-oxidase gene (35S:NoGA2ox3) or to treatment with the gibberellin biosynthesis inhibitor paclobutrazol, flowered later than wild type. These plants also showed inhibition of the expression of molecular markers related to floral transition (NtMADS-4 and NtMADS-11). To investigate further the role of gibberellin in flowering, we quantified its content in tobacco plants during development. We found a progressive reduction in the levels of GA1 and GA4 in the apical shoot during vegetative growth, reaching very low levels at floral transition and beyond. This excludes these two gibberellins as flowering-promoting factors in the apex. The evolution of active gibberellin content in apical shoots agrees with the expression patterns of gibberellin metabolism genes: two encoding gibberellin 20-oxidases (NtGA20ox1 = Ntc12, NtGA20ox2 = Ntc16), one encoding a gibberellin 3-oxidase (NtGA3ox1 = Nty) and one encoding a gibberellin 2-oxidase (NtGA2ox1), suggesting that active gibberellins are locally synthesized. In young apical leaves, GA1 and GA4 content and the expression of gibberellin metabolism genes were rather constant. Our results support that floral transition in tobacco, in contrast to that in Arabidopsis, is not regulated by the levels of GA1 and GA4 in apical shoots, although reaching a threshold in gibberellin levels may be necessary to allow meristem competence for flowering.  相似文献   

5.
Transgenic tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants expressing the Agrobacterium rhizogenes rolC gene under the control of the cauliflower mosaic virus 35S RNA promoter were constructed. These plants displayed several morphological alterations reminiscent of changes in indole-3-acetic acid (IAA), cytokinin, and gibberellin (GA) content. However, investigations showed that neither the IAA pool size nor its rate of turnover were altered significantly in the rolC plants. The biggest difference between rolC and wild-type plants was in the concentrations of the cytokinin, isopentenyladenosine (iPA) and the gibberellin GA19. Radio-immunoassay and liquid chromatography-mass spectrometry measurements revealed a drastic reduction in rolC plants of iPA as well as in several other cytokinins tested, suggesting a possible reduction in the synthesis rate of cytokinins. Furthermore, gas chromatography-mass spectrometry quantifications of GA19 showed a 5- to 6-fold increase in rolC plants compared with wild-type plants, indicating a reduced activity of the GA19 oxidase, a proposed regulatory step in the gibberellin biosynthesis. Thus, we conclude that RolC activity in transgenic plants leads to major alterations in the metabolism of cytokinins and gibberellins.  相似文献   

6.
7.
A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth‐promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode‐specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild‐type petioles was identified through a forward genetic screen. In addition to stem‐specific elongation, this mutant, named tomato internode elongated ‐1 (tie‐1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild‐type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2‐oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2‐oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ‐specific elongation.  相似文献   

8.

Key message

Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin.

Abstract

The ubiquitin–26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA3 conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.  相似文献   

9.
10.
Ent‐kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent‐kaurenoic acid (KA) to gibberellin (GA) GA12, the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2. In this study, we used various approaches to determine the physiological roles of KAO1 and KAO2 throughout plant development. Analysis of gene expression pattern reveals that both genes are mainly expressed in germinating seeds and young developing organs, thus suggesting functional redundancy. Consistent with this, kao1 and kao2 single mutants are indistinguishable from wild‐type plants. By contrast, the kao1 kao2 double mutant exhibits typical non‐germinating GA‐dwarf phenotypes, similar to those observed in the severely GA‐deficient ga1‐3 mutant. Phenotypic characterization and quantitative analysis of endogenous GA contents of single and double kao mutants further confirm an overlapping role of KAO1 and KAO2 throughout Arabidopsis development.  相似文献   

11.
Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial‐associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33P]‐orthophosphate labelling of tobacco Bright Yellow‐2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide‐dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD‐mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH‐oxidase activity. Amongst cluster III DGKs, the expression of DGK5‐like was up‐regulated in response to cryptogein. Besides DGK5‐like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid‐mediated events in plant immunity.  相似文献   

12.
13.
Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)‐preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20‐oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX‐specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild‐type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue‐specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.  相似文献   

14.
We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2-35S-Omega). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T(2) generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T(2) generation, indicating that the transgene was stable and dominant. The endogenous levels of GA(1) and GA(4) were reduced in the dwarfs, whereas large amounts of GA(17) and GA(25), which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species.  相似文献   

15.
16.
Leaf primordia are iteratively formed on the flanks of the shoot apical meristem (SAM) at the vegetative shoot apex of Arabidopsis thaliana. The youngest leaf primordia and the SAM are extensively covered by older proliferating leaves, making it difficult to obtain accurate volumetric data from these structures. Combination of serial histological sections combined with 3D reconstruction software allowed us to acquire such data. Here, we compared the SAMs of wild‐type plants of the Columbia‐0 and Landsberg erecta ecotypes with those of clavata3‐2 (clv3‐2) mutants, which produce an enlarged SAM. In addition, the SAM size and morphology of plants over‐expressing the gibberellin‐20 oxidase (GA20OX) gene was examined, and the effect of mild osmotic stress on primordium size was measured. Efficient 3D visualization of gene expression patterns is also possible with this method, as illustrated by the analysis of SHOOTMERISTEMLESS:GUS and WUSCHEL:GUS reporter lines.  相似文献   

17.
GA 20-oxidase is a key enzyme involved in gibberellin (GA) biosynthesis. In tomato, the GA 20-oxidase gene family consists of three members: GA20ox1, GA20ox2, and GA20ox3. To investigate the roles of these three genes in regulating plant growth and development, we used RNA interference technology to generate three kinds of transgenic tomato plants with suppressed expression of each three individual genes. Suppression of GA20ox1 or GA20ox2 resulted in shorter stems, a decreased length of internodes, and small dark green leaves while plants with decreased expression of GA20ox3 had no visible changes on stems and leaves. The plants of the three transgenic lines can flower and set fruits normally, but the seeds from these plants germinated slower than that from the normal plants. Decreased levels of endogenous GAs were detected in the apex of the three transgenic lines. These results demonstrate that the three GA 20-oxidase genes play different roles in the control of plan vegetative growth, but show no effects on flower and fruit development.Equal contribution authors: J. Xiao and H. Li.  相似文献   

18.
19.
In a previous study, we have identified and characterized gene from wheat (Triticum aestivum L.) encoding F-box protein and named it TaFBA. In this paper, transgenic tobacco (Nicotiana tabacum L.) plants overexpressing TaFBA1 displayed accelerated growth early, but the rate slowed gradually at later stages of growth, and the mature transgenic plants were even shorter in stature and flowered later than did the wild type (WT). Treatment with gibberellin (GA) conferred an accelerated growth rate to the transgenic tobacco plants at later stages, similar to that of WT, whereas growth was inhibited more seriously in WT than in transgenic tobacco when plants were treated with a GA biosynthesis inhibitor. The content of GA in transgenic tobacco plants was higher at early developmental stages, but it was lower at later growth stages than in WT. Some GA biosynthesis genes were down regulated, which was accompanied with elevated expression of a GA catabolism gene. Thus, our results suggest that TaFBA1 is possibly involved in the regulation of plant growth and development, and that it may be related to the production, metabolism, and proper function of GA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号