首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.  相似文献   

2.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

3.
Geographic parthenogenesis is a distribution pattern, in which parthenogenetic populations tend to live in marginal habitats, at higher latitudes and altitudes and island‐like habitats compared with the sexual forms. The facultatively parthenogenetic ant Platythyrea punctata is thought to exhibit this general pattern throughout its wide range in Central America and the Caribbean Islands. Workers of P. punctata from the Caribbean produce diploid female offspring from unfertilized eggs by thelytokous parthenogenesis, and mated females and males are rare. In contrast, workers in one colony from Costa Rica were incapable of thelytoky; instead mated workers produced all female offspring. Because sample sizes were very low in former studies, we here use microsatellite markers and explicit tests of thelytoky to examine the population genetic structure of ancestral and derived populations of P. punctata throughout the Caribbean and Central America. Populations from the Caribbean islands were fully capable of parthenogenesis, and population genetic signatures indicate that this is the predominant mode of reproduction, although males are occasionally produced. In contrast, the northernmost population on the mainland (Texas) showed signatures of sexual reproduction, and individuals were incapable of reproduction by thelytoky. Contrary to expectations from a geographic parthenogenesis distribution pattern, most parts of the mainland populations were found to be facultatively thelytokous, with population genetic signatures of both sexual and parthenogenetic reproduction.  相似文献   

4.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

5.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

6.
Population divergence in sexual traits is affected by different selection pressures, depending on the mode of reproduction. In allopatric sexual populations, aspects of sexual behavior may diverge due to sexual selection. In parthenogenetic populations, loss‐of‐function mutations in genes involved in sexual functionality may be selectively neutral or favored by selection. We assess to what extent these processes have contributed to divergence in female sexual traits in the parasitoid wasp Leptopilina clavipes in which some populations are infected with parthenogenesis‐inducing Wolbachia bacteria. We find evidence consistent with both hypotheses. Both arrhenotokous males and males derived from thelytokous strains preferred to court females from their own population. This suggests that these populations had already evolved population‐specific mating preferences when the latter became parthenogenetic. Thelytokous females did not store sperm efficiently and fertilized very few of their eggs. The nonfertility of thelytokous females was due to mutations in the wasp genome, which must be an effect of mutation accumulation under thelytoky. Divergence in female sexual traits of these two allopatric populations has thus been molded by different forces: independent male/female coevolution while both populations were still sexual, followed by female‐only evolution after one population switched to parthenogenesis.  相似文献   

7.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

8.
Scapania undulata is an aquatic dioicous liverwort growing in shallow streams in boreal to subtropical zones. We studied the expressed sex ratio, sex‐specific differences in shoot architecture and possible trade‐off between sexual and asexual reproduction in ten populations of S. undulata by surveying 100 plots in ten streams in southern Finland. The expressed sex ratio was male biased, in contrast with the sex ratio in most dioicous bryophytes. It was also highly variable between the streams, but individual plots frequently comprised shoots from only one sex. The overproduction of males might be a strategy to overcome sperm dilution and ensure fertilization over longer distances in water. No size differences between females and males were detected, but they differed in branching patterns. Evidence for a higher cost of sexual reproduction in females than males can be seen from the following: the male‐biased sex ratio; low number of sex‐expressing female shoots in female‐only plots; no co‐occurrence of gemmae and female sex organs on a single branch, and no more than one sexual branch per female shoot. In contrast, high gemma production of male and female sex‐expressing shoots indicates a minimal trade‐off between sexual and asexual reproduction. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 229–241.  相似文献   

9.
Parthenogenesis is an asexual mode of reproduction that plays an important role in the evolution of sex, sociality, and reproduction strategies in insects. Some species of cockroach exhibit thelytoky, a type of parthenogenesis in which female offspring are produced without fertilization. However, the cytological and genetic mecha? nisms of parthenogenesis in cockroaches are not well understood. Here we provide the first molecular genetic evidence that cockroaches can reproduce through automixis. Using the American cockroach Periplaneta aniericana, we performed microsatellite analysis to investigate the genetic relationship between parthenogenetically produced nymphs and the parent virgin females, and found that all parthenogenetic offspring were homozygous for autosomal microsatellite markers, whereas the female parents were heterozygous. In addition, flow cytometry analysis revealed that the parthenogenetic offspring were diploid. Taken together, our results demonstrate that P. americana exhibits automixis-type thelytoky, in which diploidy is restored by gamete duplication or terminal fusion. These findings highlight the unique reproduction strategies of cockroaches, which are more varied than was previously recognized.  相似文献   

10.
In this study, two parthenogenetic events within a family of the whitespotted bambooshark Chiloscyllium plagiosum are reported. A captive female produced multiple parthenogens. Unexpectedly, a single specimen of a total of nine parthenogens displayed external claspers characterizing the male sex in chondrichthyans. Upon dissection, internal sexual organs of this specimen were malformed or absent; however, the presence of claspers in this study challenges the as yet assumed sex determination system in this shark species. Even more remarkable was that one of the female parthenogens reproduced asexually again producing viable offspring. As far as is known, this is the first genetically confirmed evidence for second‐generation facultative parthenogenesis in vertebrates. These results support the evolutionary significance of parthenogenesis as an alternative to sexual reproduction.  相似文献   

11.
Sexual reproduction of Daphnia pulex in a temporary habitat   总被引:1,自引:0,他引:1  
David J. Innes 《Oecologia》1997,111(1):53-60
Species of Daphnia (Crustacea: Cladocera) typically reproduce by cyclical parthenogenesis, in which a period of all-female parthenogenetic reproduction is followed by sexual reproduction. Sex in Daphnia is determined by the environment, with factors such as temperature, photoperiod and crowding stimulating the production of males and sexual females. Previous studies on Daphnia pulex from temporary pond habitats demonstrated the coexistence of male-producing and non-male-producing (NMP) females, as determined under crowding in the laboratory. A strong genetic component to this sex allocation variation suggested that sex expression in D. pulex is better described as a result of genotype-environment interaction. The present study examined the switch from parthenogenetic to sexual reproduction in two temporary-pond populations of D. pulex. Both populations showed a very early investment in sexual reproduction, independent of population density, by producing males very soon after the populations were reestablished from resting eggs in the early spring. Approximately 40% of the initial broods were male. Additional evidence for gender specialization was obtained by observing the sex of two or three successive broods for 85 individual females. Fifty-eight females produced successive broods of females, 13 females produced successive broods of males and 14 females produced successive broods which included both male and female broods. Females that produced successive female broods under natural conditions included a higher frequency of NMP females compared to a random sample of females, confirming the existence of NMP females. Sexual females were observed in both populations after the first appearence of males, suggesting that the presence of males may stimulate the production of sexual females. For D. pulex populations in a temporary environment, there appears to be an increased emphasis on sexual reproduction and a decreased influence of the environment on sex determination, compared to Daphnia populations in more permanent habitats. Received: 19 February 1996 / Accepted: 20 January 1997  相似文献   

12.
In isogamous brown algae, the sexuality of populations needs to be tested by laboratory crossing experiments, as the sexes of gametophytes are morphologically indistinguishable. In some cases, gamete fusion is not observed and the precise reproductive mode of the populations is unknown. In the isogamous brown alga Scytosiphon lomentaria in Japan, both asexual (gamete fusion is unobservable) and sexual populations (gamete fusion is observable) have been reported. In order to elucidate the reproductive mode of asexual populations in this species, we used PCR‐based sex markers to investigate the sex ratio of three asexual and two sexual field populations. The markers indicated that the asexual populations consisted only of female individuals, whereas sexual populations are composed of both males and females. In culture, female gametes of most strains from asexual populations were able to fuse with male gametes; however, they had little to no detectable sexual pheromones, significantly larger cell sizes, and more rapid parthenogenetic development compared to female/male gametes from sexual populations. Investigations of sporophytic stages in the field indicated that alternation of gametophytic and parthenosporophytic stages occur in an asexual population. These results indicate that the S. lomentaria asexual populations are female populations that lack sexual reproduction and reproduce parthenogenetically. It is likely that females in the asexual populations have reduced a sexual trait (pheromone production) and have acquired asexual traits (larger gamete sizes and rapid parthenogenetic development).  相似文献   

13.
The systematics of three genera of New Zealand stick insect in the subfamily Phasmatinae were investigated in light of inconsistencies in morphological variability within and among species. We sequenced a region of the mitochondrial genome, cytochrome oxidase (COI & COII; 1448 bp), and a nuclear marker, the internal transcribed spacers (ITS1 & ITS2; 1804 bp) from 49 stick insects. Mitochondrial DNA sequence divergences among the three genera (Argosarchus, Clitarchus and Acanthoxyla) were relatively high (~12%) but the current taxonomy within genera was not supported. Within the three genera, low levels of genetic divergence were observed at both nuclear and mitochondrial loci, and phylogenetic analyses failed to support reciprocal monophyly of the two species in Argosarchus and Clitarchus. Sympatric individuals of Argosarchus spiniger and A. horridus were more closely related to each other than to members of their respective morphospecies from elsewhere. No males were found in the Chatham Island population of Argosarchus and although this population has been referred to as A. schauinslandi, genetic and morphological evidence does not support its distinction from mainland Argosarchus. Likewise, individuals identified as Clitarchus tuberculatus were genetically identical, or most similar to, C. hookeri from the same or adjacent sites rather then grouping with the stick insects they were morphologically most similar to. Lack of spatial, behavioural or ecological evidence concordant with the described species A. spiniger, A. schauinslandi and C. tuberculatus leads us to infer that these species are synonymies of A. horridus and C. hookeri respectively. We conclude that Argosarchus and Clitarchus have each been over‐split and actually consist of a single morphologically polymorphic, facultative parthenogenetic species. The genus Acanthoxyla with eight described species also has low levels of genetic divergence, similar to those found in Argosarchus and Clitarchus. A possible hybrid origin of Acanthoxyla involving its sister genus Clitarchus is implied by sharing of ITS sequence variants, but further sampling is needed before the species status of these obligate parthenogenetic lineages can be resolved. In contrast to some New Zealand Orthoptera, the Phasmatinae show little genetic variation suggesting coalescence in recent times, possibly reflecting lineage sorting in the Pleistocene.  相似文献   

14.
Variability for mixis initiation in Brachionus plicatilis   总被引:1,自引:0,他引:1  
Deductions from both evolutionary models and inductive argumentation from empirical data support the notion of intraspecific variability for the initiation of sexual reproduction (mixis) within rotifer populations. In this study, we focus on the time and density at which mixis is initiated in a growing population. Cyclical parthenogenetic clones of Brachionus plicatilis established by hatching of resting eggs, isolated from a natural habitat, have been tested at the start of their sexual phase. Clones exhibited great variation for this trait, their time of switching to sexual reproduction being correlated with population density. Most of the variation for mixis initiation has either low or no heritability and is caused by individual environmental factors.  相似文献   

15.
1. In the life cycle of monogonont rotifers it is generally assumed that diapausing eggs invariably hatch into amictic stem females which produce female offspring parthenogenetically. Diapausing eggs are only produced by later generations after sexual reproduction has been induced by environmental cues. 2. We show that populations of an undescribed Hexarthra species inhabiting small temporary ponds in the Chihuahuan Desert deviate from this life cycle pattern. These ponds may dry within days and up to 85% of females were mictic. Females producing male offspring and diapausing eggs were observed 1 or 2 days, respectively, after ponds had filled with water. 3. Under laboratory conditions, 7–46% of females hatching from re‐hydrated sediments were sexual. Male offspring of these females can fertilise other mictic stem females leading to diapausing egg formation. In laboratory experiments, females produced fully developed diapausing eggs within 1.9 days at 20 °C and 1.2 days at 30 °C. 4. In addition, embryonic development time (1.1–0.3 days at temperatures between 12 and 30 °C) and juvenile period (2.1–0.5 days for the same temperature range) are shorter than those of other rotifer species. In short‐lived habitats, the potential for rapid population development and production of new diapausing eggs may be crucial in the long‐term survival of populations.  相似文献   

16.
Parthenogenesis, including facultative parthenogenesis, is common among orthopteroid insects. We investigated the fitness associated with sexual and asexual reproduction within a population of the facultatively parthenogenetic cockroach Nauphoeta cinerea. There is significantly reduced fitness for females reproducing parthenogenetically compared to sexually. Fewer than half of all females can reproduce parthenogenetically. In addition, tenfold fewer offspring are produced by parthenogenesis due to reductions in both the number of offspring produced per clutch and the number of clutches produced. Development and brooding of sexually or parthenogenetically produced first instar nymphs does not differ, although the production of the first parthenogenetic clutch is delayed relative to the first sexually produced clutch. The fitness of parthenogens is also lower than the fitness of sexually produced offspring. Parthenogens are less viable than sexually produced offspring even in the benign conditions of the laboratory. Development to adulthood of parthenogens is slower. Fewer parthenogens survive to adulthood and the adult life span of parthenogens is reduced. Individuals produced by parthenogenetic reproduction are unlikely to reproduce parthenogenetically themselves. Finally, parthenogenetically produced females produce fewer offspring by sexual reproduction than do sexually produced females. Since parthenogenetic reproduction is apomictic in N. cinerea and parthenogens are diploid, we suggest that asexual reproduction is developmentally constrained. Once meiosis has evolved, returning to a mitotic mode of reproduction may be difficult. Nauphoeta cinerea offers a system for testing how asexuality is constrained as modes of reproduction can be compared within a facultative parthenogen.  相似文献   

17.
The burrowing polymitarcyid mayfly Ephoron shigae is a geographically parthenogenetic species. Interestingly, the distributions of the bisexual and unisexual populations overlap broadly in their respective geographic ranges. In this mayfly, obligatory diploid thelytoky appears within unisexual populations. In the present study, we examined the potential for parthenogenesis or the parthenogenetic ability of females in a bisexual population aiming to understand the emergence of unisexual populations. The results obtained revealed that females in the examined bisexual populations showed a potential for diploid thelytoky as also seen in the unisexual populations, although, in females from bisexual populations, the development success rates of their unfertilized eggs were considerably lower than those of virgin females from unisexual populations. In the three bisexual reproducing species (Ephemera japonica, Ephemera strigata, and Ephemera orientalis) in the closely‐related family Ephemeridae, diploid thelytoky (i.e. tychoparthenogenesis; < 3%) was also observed. However, in this case, the parthenogenetic development success rates of unfertilized eggs were significantly lower than those of virgin females in the bisexual (Hino‐yosui Irrigation Canal) population of E. shigae. Accordingly, we suggest that parthenogenetic ability (i.e. tychoparthenogenesis or facultative parthenogenesis) in bisexual populations of E. shigae may facilitate the evolutionary transition to unisexual populations with fully obligatory parthenogenesis. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 326–334.  相似文献   

18.
SUMMARY 1. Sexual reproduction in the heterogonic life cycle of many rotifers occurs when amictic females, which produce diploid eggs developing parthenogenetically into females, are environmentally induced to produce mictic females. Mictic females produce haploid eggs which develop parthenogenetically into males or, if fertilised, into resting eggs – encysted embryos which develop into amictic females after an obligatory diapause. 2. A Florida strain of Brachionus calyciflorus was used to test the prediction that amictic females hatching from resting eggs (Generation 1), and those from the next few parthenogenetic generations, have a lower propensity to produce mictic daughters in response to crowding than those from later parthenogenetic generations. In 10 replicate clones, populations initiated by amictic females from generations 1, 5, 8, 12 and 18 were exposed to a standardised crowding stimulus, and the proportion of mictic females in the populations was determined. These proportions varied significantly across generations and clones. They were very low in the early generations and gradually increased to a mean of about 0.5 at Generation 12. 3. The mechanism for the transgenerational plasticity in response to crowding is not known. One possibility is that resting eggs contain an agent from their fertilised mictic mother's yolk gland that prevents development into mictic females and is transmitted in increasingly low concentrations through successive parthenogenetic generations of amictic females. 4. This parental effect may contribute to clonal fitness by ensuring that a clone developing from a resting egg will attain a higher population size through female parthenogenesis before maximising its commitment to sexual reproduction, even in the presence of a crowding stimulus from a high population density of other clones. Therefore, the number of resting eggs to which a clone contributes its genes should be maximised. 5. The clonal variation in propensity to produce mictic females in this strain indicates genetic variation in the trade‐off between maximising population growth via female parthenogenesis and increasing the probability of producing at least some resting eggs before local extinction from the plankton.  相似文献   

19.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

20.
Sexual reproduction is an evolutionary ‘puzzle’. A sexual female ‘throws away’ half of her genes (during meiosis), and ‘fills up’ what she lost with genes from a male. Thus, sexual reproduction can only be successful if the offspring with the new mixture of genes should be more than twice as fit as if she had just made a copy of herself. A challenging hypothesis assumes that infectious diseases select for females that reshuffle the immune genes for their offspring in each generation. The required increase in quality could be achieved by females selectively ‘smelling out’ suitable immune‐genes (i.e. Mhc alleles) in potential partners, which, in combination with the female's genes, offer optimal resistance against quickly changing infectious diseases. It was found that most three spined sticklebacks Gasterosteus aculeatus in natural populations around Plön, Germany, had intermediate instead of maximal numbers of different Mhc class IIB alleles. Furthermore, fish with an intermediate number of different Mhc alleles were infected with the lowest number of both parasite species and parasites per species. This suggests that Mhc heterozygosity was optimized instead of maximized. Can this immunogenetic optimum be achieved through female choice? In a flow channel design that allowed the detection of olfactory signals only, it was found that female three‐spined sticklebacks that were ready to spawn preferred males as mates that in combination with their Mhc alleles would allow the production of offspring with the optimal number of Mhc alleles. Thus, mate choice in three‐spined sticklebacks could have the two‐fold advantage over asexual reproduction that is required to maintain sexual reproduction. The interaction of olfactory with visual signals in three‐spined stickleback mate choice is discussed. The three‐spined stickleback is a suitable model organism for studying the evolution of sexual reproduction in relation to optimizing offspring immune genetics although other fishes may be as suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号