首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila Dhr78 orphan nuclear receptor has been proposed to play a role in molting of the tracheal cuticle and regulate gene expression during the third larval instar, possibly in response to a novel systemic hormonal signal. Here, we show that there are no essential maternal functions for Dhr78 during development, and that mutants missing both maternal and zygotic Dhr78 function die primarily during second and third instar larval development. We show that defects in the tracheal system can be observed as early as the first instar, manifested as regions of fluid in the dorsal tracheal trunks. In addition, Dhr78 mutant tracheae show a highly penetrant defect in gas filling at the first-to-second instar larval molt. Dhr78 expression in only the tracheal system is sufficient to rescue the lethality of Dhr78 mutants, and selective inactivation of Dhr78 function in the tracheae by targeted RNAi is sufficient to result in tracheal defects. Finally, we see no evidence for widespread activation of the Dhr78 ligand binding domain in third instar larvae using the GAL4-LBD system, arguing against a systemic hormone for the receptor at this stage in development. Taken together, our results indicate that Dhr78 exerts its essential functions during molting of the tracheal cuticle in Drosophila.  相似文献   

2.
Cullins confer substrate specificity to E3-ligases which are multi-protein complexes involved in ubiquitin-mediated protein degradation or modification. There are six cullin genes in Drosophila melanogaster. We have raised an antibody against Cul-5 and demonstrated that it expresses in neuronal and non-neuronal cells throughout development. In the embryonic tracheal system, Cul-5 is enriched at fusion sites together with E-Cadherin and Fasciclin III. Mutations of cul-5 do not affect tracheal development but do show defects in the organization of synaptic boutons at the larval neuromuscular junction where the protein is expressed in a subset of motoneuron terminals. Loss of function of another cullin gene ‘cul-2’ results in similar defects at the larval neuromuscular junction although cul-2;cul-5 double mutants do not show an enhanced phenotype. Both cul-2 and cul-5 mutants show similar aberrations in the development of female germ line. Our results suggest that both of these cullin proteins participate in similar developmental processes.  相似文献   

3.

Background

There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex.

Principal Findings

We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis.

Conclusions/Significance

These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein.  相似文献   

4.
The tracheal apical extracellular matrix (aECM) is vital for expansion of the tracheal lumen and supports the normal structure of the lumen to guarantee air entry and circulation in insects. Although it has been found that some cuticular proteins are involved in the organization of the aECM, unidentified factors still exist. Here, we found that mind the gap (Mtg), a predicted chitin‐binding protein, is required for the normal formation of the apical chitin matrix of airway tubes in the model holometabolous insect Drosophila melanogaster. Similar to chitin, the Mtg protein was linearly arranged in the tracheal dorsal trunk of the tracheae in Drosophila. Decreased mtg expression in the tracheae seriously affected the viability of larvae and caused tracheal chitin spiral defects in some larvae. Analysis of mtg mutant showed that mtg was required for normal development of tracheae in embryos. Irregular taenidial folds of some mtg mutant embryos were found on either lateral view of tracheal dorsal trunk or internal view of transmission electron microscopy analysis. These abnormal tracheae were not fully filled with gas and accompanied by a reduction in tracheal width, which are characteristic phenotypes of tracheal aECM defects. Furthermore, in the hemimetabolous brown planthopper (BPH) Nilaparvata lugens, downregulation of NlCPAP1‐N (a homolog of mtg) also led to the formation of abnormal tracheal chitin spirals and death. These results suggest that mtg and its homolog are involved in the proper organization of the tracheal aECMs in flies and BPH, and that this function may be conserved in insects.  相似文献   

5.
Hypervirulent Klebsiella pneumoniae (hvKP) causes Klebsiella-induced liver abscess. Capsule is important for the pathogenesis of Klebsiella in systemic infection, but its role in gut colonisation is not well understood. By generating ΔwcaJ, Δwza and Δwzy capsule-null mutants in a prototypical K1 hypervirulent isolate, we show that inactivation of wza (capsule exportase) and wzy (capsule polymerase) confer cell envelope defects in addition to capsule loss, making them susceptible to bile salts and detergent stress. Bile salt resistance is restored when the initial glycosyltransferase wcaJ was inactivated together with wzy, indicating that build-up of capsule intermediates contribute to cell envelope defects. Mouse gut colonisation competition assays show that the capsule and its regulator RmpA were not required for hvKP to persist in the gut, although initial colonisation was decreased in the mutants. Both ΔrmpA and ΔwcaJ mutants gradually outcompeted the wild type in the gut, whereas Δwza and Δwzy mutants were less fit than wild type. Together, our results advise caution in using the right capsule-null mutant for determination of capsule's role in bacterial pathogenesis. With the use of ΔwcaJ mutant, we found that although the capsule is important for bacterial survival outside the gut environment, it imposes a fitness cost in the gut.  相似文献   

6.
 The Drosophila tracheal system is a network of epithelial tubes that arises from the tracheal placodes, lateral clusters of ectodermal cells in ten embryonic segments. The cells of each cluster invaginate and subsequent formation of the tracheal tree occurs by cell migration and fusion of tracheal branches, without cell division. The combined action of the Decapentaplegic (Dpp), Epidermal growth factor (EGF) and breathless/branchless pathways are thought to be responsible for the pattern of tracheal branches. We ask how these transduction pathways regulate cell migration and we analyse the consequences on cell behaviour of the Dpp and EGF pathways. We find that rhomboid (rho) mutant embryos display defects not only in tracheal cell migration but also in tracheal cell invagination unveiling a new role for EGF signalling in the formation of the tracheal system. These results indicate that the transduction pathways that control tracheal cell migration are active in different steps of tracheal formation, beginning at invagination. We discuss how the consecutive steps of tracheal morphogenesis might affect the final branching pattern. Received: 9 October 1998 / Accepted: 5 November 1998  相似文献   

7.
《Fly》2013,7(3):157-164
The FGFR pathway triggers a wide range of key biological responses. Among others, the Breathless (Btl, Drosophila FGFR1) receptor cascade promotes cell migration during embryonic tracheal system development. However, how the actin cytoskeleton responds to Btl pathway activation to induce cell migration has remained largely unclear. Our recent results shed light into this issue by unveiling a link between the actin-bundling protein Singed (Sn) and the Btl pathway. We showed that the Btl pathway regulates sn, which leads to the stabilization of the actin bundles required for filopodia formation and actin cytoskeleton rearrangement. This regulation contributes to tracheal migration, tracheal branch fusion and tracheal cell elongation. Parallel actin bundles (PABs) are usually cross-linked by more than one actin-bundling protein. Accordingly, we have also shown that sn synergistically interacts with forked (f), another actin crosslinker. In this Extra View we extend f analysis and hypothesize how both actin-bundling proteins may act together to regulate the PABs during tracheal embryonic development. Although both proteins are required for similar tracheal events, we suggest that Sn is essential for actin bundle initiation and stiffening, while F is required for the lengthening and further stabilization of the PABs.  相似文献   

8.
Branching morphogenesis of the Drosophila tracheal system relies on the fibroblast growth factor receptor (FGFR) signaling pathway. The Drosophila FGF ligand Branchless (Bnl) and the FGFR Breathless (Btl/FGFR) are required for cell migration during the establishment of the interconnected network of tracheal tubes. However, due to an important maternal contribution of members of the FGFR pathway in the oocyte, a thorough genetic dissection of the role of components of the FGFR signaling cascade in tracheal cell migration is impossible in the embryo. To bypass this shortcoming, we studied tracheal cell migration in the dorsal air sac primordium, a structure that forms during late larval development. Using a mosaic analysis with a repressible cell marker (MARCM) clone approach in mosaic animals, combined with an ethyl methanesulfonate (EMS)-mutagenesis screen of the left arm of the second chromosome, we identified novel genes implicated in cell migration. We screened 1123 mutagenized lines and identified 47 lines displaying tracheal cell migration defects in the air sac primordium. Using complementation analyses based on lethality, mutations in 20 of these lines were genetically mapped to specific genomic areas. Three of the mutants were mapped to either the Mhc or the stam complementation groups. Further experiments confirmed that these genes are required for cell migration in the tracheal air sac primordium.  相似文献   

9.
Tracheal and nervous system development are two model systems for the study of organogenesis in Drosophila. In two independent screens, we identified three alleles of a gene involved in tracheal, cuticle and CNS development. Here, we show that these alleles, and the previously identified cystic and mummy, all belong to the same complementation group. These are mutants of a gene encoding the UDP-N-acetylglucosamine diphosphorylase, an enzyme responsible for the production of UDP-N-acetylglucosamine, an important intermediate in chitin and glycan biosynthesis. cyst was originally singled out as a gene required for the regulation of tracheal tube diameter. We characterized the cyst/mmy tracheal phenotype and upon histological examination concluded that mmy mutant embryos lack chitin-containing structures, such as the procuticle at the epidermis and the taenidial folds in the tracheal lumen. While most of their tracheal morphogenesis defects can be attributed to the lack of chitin, when compared to krotzkopf verkehrt (kkv) chitin-synthase mutants, mmy mutants showed a stronger phenotype, suggesting that some of the mmy phenotypes, like the axon guidance defects, are chitin-independent. We discuss the implications of these new data in the mechanism of size control in the Drosophila trachea.  相似文献   

10.
Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well‐visualized in living intact animals under normal bright‐field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf‐related gene (DjrafA) and mek‐related gene (DjmekA) we identified both play a major role in the activation of extracellular signal‐regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi‐induced defects on gut tube remodeling in a time‐saving initial screening using blood‐feeding without immunohistochemical detection of the gut. Thus, this blood‐feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians.  相似文献   

11.
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose‐digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as “Trojan Horses” to express and spread ligand‐Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as “Trojan Horses.” We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand‐Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.  相似文献   

12.
The cellular and molecular cues involved in creating branched tubular networks that transport liquids or gases throughout an organism are not well understood. To identify factors required in branching and lumen formation of Drosophila tracheal terminal cells, a model for branched tubular networks, we performed a forward genetic-mosaic screen to isolate mutations affecting these processes. From this screen, we have identified the first Drosophila mutation in the gene Zpr1 (Zinc finger protein 1) by the inability of Zpr1-mutant terminal cells to form functional, gas-filled lumens. We show that Zpr1 defective cells initiate lumen formation, but are blocked from completing the maturation required for gas filling. Zpr1 is an evolutionarily conserved protein first identified in mammalian cells as a factor that binds the intracellular domain of the unactivated epidermal growth factor receptor (EGFR). We show that down-regulation of EGFR in terminal cells phenocopies Zpr1 mutations and that Zpr1 is epistatic to ectopic lumen formation driven by EGFR overexpression. However, while Zpr1 mutants are fully penetrant, defects observed when reducing EGFR activity are only partially penetrant. These results suggest that a distinct pathway operating in parallel to the EGFR pathway contributes to lumen formation, and this pathway is also dependent on Zpr1. We provide evidence that this alternative pathway may involve fibroblast growth factor receptor (FGFR) signaling. We suggest a model in which Zpr1 mediates both EGFR and FGFR signal transduction cascades required for lumen formation in terminal cells. To our knowledge, this is the first genetic evidence placing Zpr1 downstream of EGFR signaling, and the first time Zpr1 has been implicated in FGFR signaling. Finally, we show that down-regulation of Smn, a protein known to interact with Zpr1 in mammalian cells, shows defects similar to Zpr1 mutants.  相似文献   

13.
《Fly》2013,7(5):287-290
Although bilateral animals, including Drosophila, appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in Drosophila have not been studied well. We showed that two type I Myosin proteins play crucial roles in the manifestation of Drosophila handedness. Mutants of Myosin31DF (Myo31DF), which encodes a type ID Myosin, showed reversed laterality of the embryonic and adult gut and testis. Myo31DF was required in the epithelial cells of the embryonic hindgut, where its protein co-localized with actin filaments, for the correct handedness of this organ. Disorganization of the actin cytoskeleton in the hindgut epithelium caused LR defects of the embryonic hindgut. These results suggest that the actin-based Myo31DF function is required for proper handedness. In contrast, the disruption of microtubules in the hindgut epithelium did not affect the laterality of this organ. We also found that the overexpression of Myosin61F (Myo61F), which encodes another type I Myosin, in the hindgut epithelium reversed the hindgut handedness, suggesting that these two type I Myosins, Myo31DF and Myo61F, have antagonistic functions. We propose that the actin-based functions of type I Myosins play critical roles in generating LR asymmetry in invertebrates.  相似文献   

14.
The Retinal Homeobox (Rx) gene is essential for vertebrate eye development. Rx function is required for the specification and maintenance of retinal progenitor cells (RPCs). Loss of Rx function leads to a lack of eye development in a variety of species. Here we show that Rx function is also necessary during retinal regeneration. We performed a thorough characterization of retinal regeneration after partial retinal resection in pre-metamorphic Xenopus laevis. We show that after injury the wound is repopulated with retinal progenitor cells (RPCs) that express Rx and other RPC marker genes. We used an shRNA-based approach to specifically silence Rx expression in vivo in tadpoles. We found that loss of Rx function results in impaired retinal regeneration, including defects in the cells that repopulate the wound and the RPE at the wound site. We show that the regeneration defects can be rescued by provision of exogenous Rx. These results demonstrate for the first time that Rx, in addition to being essential during retinal development, also functions during retinal regeneration.  相似文献   

15.
Organizing centers in the developing brain provide an assortment of instructive patterning cues, including Sonic hedgehog (Shh). Here we characterize the forebrain phenotype caused by loss of Ttc21b, a gene we identified in an ENU mutagenesis screen as a novel ciliary gene required for retrograde intraflagellar transport. The Ttc21b mutant has defects in limb, eye and, most dramatically, brain development. We show that Shh signaling is elevated in the rostral portion of the mutant embryo, including in a domain in or near the zona limitans intrathalamica. We demonstrate here that ciliary defects seen in the Ttc21b mutant extend to the embryonic brain, adding forebrain development to the spectrum of tissues affected by defects in ciliary physiology. We show that development of the Ttc21b brain phenotype is modified by lowering levels of the Shh ligand, supporting our hypothesis that the abnormal patterning is a consequence of elevated Shh signaling. Finally, we evaluate Wnt signaling but do not find evidence that this plays a role in causing the perturbed neurodevelopmental phenotype we describe.  相似文献   

16.
Peptide hormones governing many developmental processes are generated via endoproteolysis of inactive precursor molecules by a family of subtilisin-like proprotein convertases (SPCs). We previously identified mutations in the Drosophila amontillado (amon) gene, a homolog of the vertebrate neuroendocrine-specific Prohormone Convertase 2 (PC2) gene, and showed that amon is required during embryogenesis, early larval development, and larval molting. Here, we define amon requirements during later developmental stages using a conditional rescue system and find that amon is required during pupal development for head eversion, leg and wing disc extension, and abdominal differentiation. Immuno-localization experiments show that amon protein is expressed in a subset of central nervous system cells but does not co-localize with peptide hormones known to elicit molting behavior, suggesting the involvement of novel regulatory peptides in this process. The amon protein is expressed in neuronal cells that innervate the corpus allatum and corpora cardiaca of the ring gland, an endocrine organ which is the release site for many key hormonal signals. Expression of amon in a subset of these cell types using the GAL4/UAS system in an amon mutant background partially rescues larval molting and growth. Our results show that amon is required for pupal development and identify a subset of neuronal cell types in which amon function is sufficient to rescue developmental progression and growth defects shown by amon mutants. The results are consistent with a model that the amon protein acts to proteolytically process a diverse suite of peptide hormones that coordinate larval and pupal growth and development.  相似文献   

17.

Background  

Craniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified.  相似文献   

18.
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.  相似文献   

19.
H2.0, a homeobox gene identified by homology to the Sex combs reduced homeobox of Drosophila, is expressed in all the cellular precursors of the visceral musculature. By analogy to the essential function of most other known homeobox genes in determining the fate of cells where they are expressed, we hypothesized that mutation of H2.0 would disrupt gut muscle development. In this paper, we show that a small deletion, which eliminates H2.0, has no detectable effect on normal gut morphogenesis, visceral muscle actin organization, or larval peristalsis.  相似文献   

20.

Background

The spindle assembly checkpoint (SAC) delays anaphase onset by inhibiting the activity of the anaphase promoting complex/cyclosome (APC/C) until all of the kinetochores have properly attached to the spindle. The importance of SAC genes for genome stability is well established; however, the roles these genes play, during postembryonic development of a multicellular organism, remain largely unexplored.

Results

We have used GFP fusions of 5' upstream intergenic regulatory sequences to assay spatiotemporal expression patterns of eight conserved genes implicated in the spindle assembly checkpoint function in Caenorhabditis elegans. We have shown that regulatory sequences for all of the SAC genes drive ubiquitous GFP expression during early embryonic development. However, postembryonic spatial analysis revealed distinct, tissue-specific expression of SAC genes with striking co-expression in seam cells, as well as in the gut. Additionally, we show that the absence of MDF-2/Mad2 (one of the checkpoint genes) leads to aberrant number and alignment of seam cell nuclei, defects mainly attributed to abnormal postembryonic cell proliferation. Furthermore, we show that these defects are completely rescued by fzy-1(h1983)/CDC20, suggesting that regulation of the APC/CCDC20 by the SAC component MDF-2 is important for proper postembryonic cell proliferation.

Conclusion

Our results indicate that SAC genes display different tissue-specific expression patterns during postembryonic development in C. elegans with significant co-expression in hypodermal seam cells and gut cells, suggesting that these genes have distinct as well as overlapping roles in postembryonic development that may or may not be related to their established roles in mitosis. Furthermore, we provide evidence, by monitoring seam cell lineage, that one of the checkpoint genes is required for proper postembryonic cell proliferation. Importantly, our research provides the first evidence that postembryonic cell division is more sensitive to SAC loss, in particular MDF-2 loss, than embryonic cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号