首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive plants that displace native floral communities can cause changes to associated invertebrate species assemblages. Using a mini‐review of the literature and our own data we add to the still considerable debate about the most effective methods for testing community‐level impacts by invasive species. In endangered saltmarshes of southeast Australia, the non‐native rush Juncus acutus L. is displacing its native congener J. kraussii Hochst., with concurrent changes to floral and faunal assemblages. In two coastal saltmarshes, we tested the hypothesis that the ability to detect differences in the invertebrate assemblage associated with these congeneric rushes depends on the microhabitat of the plant sampled. We used three sampling methods, each targeting specific microhabitats: sweep netting of the plant stems, vacuum sampling of the plant tussock, and vacuum sampling of the ground directly below the plants. Over 3800 individuals and 92 morphospecies were collected across four main taxa: gastropods, crustaceans, hexapods and arachnids. Detection of differences in invertebrate density, richness and composition associated with native compared with non‐native rushes was dependent on the microhabitat sampled and these differences were spatially variable. For example, at one saltmarsh the stems and tussock of J. acutus had a lower density and richness of total invertebrates and hexapods than those of the native J. kraussii. In contrast, crustaceans on the ground were in greater abundance below J. acutus than J. kraussii. This study demonstrates that on occasions where overall differences in the assemblage are not detected between species, differences may become apparent when targeting different microhabitats of the plant. In addition, separately targeting multiple microhabitats likely leads to a greater probability of detecting impacts of invasion. Comparing the invertebrate assemblage without differentiating between or sampling an array of microhabitats can fail to determine the impact of invasive species. These results highlight that a combination of methods targeting different microhabitats is important for detecting differences within the invertebrate community, even for phylogenetically related species.  相似文献   

2.
3.
The enemy release hypothesis posits that non‐native plant species may gain a competitive advantage over their native counterparts because they are liberated from co‐evolved natural enemies from their native area. The phylogenetic relationship between a non‐native plant and the native community may be important for understanding the success of some non‐native plants, because host switching by insect herbivores is more likely to occur between closely related species. We tested the enemy release hypothesis by comparing leaf damage and herbivorous insect assemblages on the invasive species Senecio madagascariensis Poir. to that on nine congeneric species, of which five are native to the study area, and four are non‐native but considered non‐invasive. Non‐native species had less leaf damage than natives overall, but we found no significant differences in the abundance, richness and Shannon diversity of herbivores between native and non‐native Senecio L. species. The herbivore assemblage and percentage abundance of herbivore guilds differed among all Senecio species, but patterns were not related to whether the species was native or not. Species‐level differences indicate that S. madagascariensis may have a greater proportion of generalist insect damage (represented by phytophagous leaf chewers) than the other Senecio species. Within a plant genus, escape from natural enemies may not be a sufficient explanation for why some non‐native species become more invasive than others.  相似文献   

4.
Long‐standing theory predicts herbivores and predators should drive selection for increased plant defences, such as the specific production of volatile organic compounds for attracting predators near the site of damage. Along elevation gradients, a general pattern is that herbivores and predators are abundant at low elevation and progressively diminish at higher elevations. To determine whether plant adaptation along such a gradient influences top‐down control of herbivores, we manipulated soil predatory nematodes, root herbivore pressure and plant ecotypes in a reciprocal transplant experiment. Plant survival was significantly higher for low‐elevation plants, but only when in the presence of predatory nematodes. Using olfactometer bioassays, we showed correlated differential nematode attraction and plant ecotype‐specific variation in volatile production. This study not only provides an assessment of how elevation gradients modulate the strength of trophic cascades, but also demonstrates how habitat specialisation drives variation in the expression of indirect plant defences.  相似文献   

5.
6.
Understanding the novel ecological interactions that result from biological invasions is a critical issue in modern ecology and evolution as well as pest management. Introduced herbivorous insects may interact with native plants and indigenous natural enemies, creating novel tri‐trophic interactions. To help predict the potential outcomes of novel interactions, we investigated the behavioural and physiological responses of an indigenous generalist parasitoid (Habrobracon gelechiae) to an introduced generalist herbivore (the light brown apple moth, Epiphyas postvittana) and its new host plants in California. We first examined the parasitoid's host location and acceptance on a range of nine common host plants of the moth representing distinctly different geographic origins and morphologies (to examine the effect of a known toxic plant on the parasitoid's performance, an additional toxic plant species was also tested that the moth consumes in the laboratory but does not naturally attack). The parasitoid was able to locate the host larvae on all plants equally well, although clutch size was affected by host plant. We then determined fitness of the moth and the parasitoid on four representative plants. The moth larvae suffered higher mortality and a slower developmental rate on the known toxic plant than on the other three plants, but the parasitoid's fitness correlates did not differ between the host food plants. These results show a high level of plasticity in the indigenous generalist parasitoid in its ability to exploit the exotic host on a wide range of host plants, generating an invasion‐driven novel tri‐trophic interaction.  相似文献   

7.
8.
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

9.
10.
11.
Effects of host plant α‐ and β‐diversity often confound studies of herbivore β‐diversity, hindering our ability to predict the full impact of non‐native plants on herbivores. Here, while controlling host plant diversity, we examined variation in herbivore communities between native and non‐native plants, focusing on how plant relatedness and spatial scale alter the result. We found lower absolute magnitudes of β‐diversity among tree species and among sites on non‐natives in all comparisons. However, lower relative β‐diversity only occurred for immature herbivores on phylogenetically distinct non‐natives vs. natives. Locally in that comparison, non‐native gardens had lower host specificity; while among sites, the herbivores supported were a redundant subset of species on natives. Therefore, when phylogenetically distinct non‐natives replace native plants, the community of immature herbivores is likely to be homogenised across landscapes. Differences in communities on closely related non‐natives were subtler, but displayed community shifts and increased generalisation on non‐natives within certain feeding guilds.  相似文献   

12.
1. Despite non‐point‐source (NPS) pollution being perhaps the most ubiquitous stressor affecting urban streams, there is a lack of research assessing how urban NPS pollution affects stream ecosystems. We used a natural experimental design approach to assess how stream macroinvertebrate community structure, secondary production and trophic structure are influenced by urban NPS pollution in six streams. 2. Differences in macroinvertebrate community structure and secondary production among sites were highly correlated with stream‐water specific conductivity and dissolved inorganic phosphorus (DIP) concentrations. Macroinvertebrate richness, the Shannon diversity index and the Shannon evenness index were all negatively correlated with specific conductivity. These patterns were driven by differences in the richness and production of EPT and other intolerant taxa. Production of the five most productive taxa, tolerant taxa, non‐insect taxa and primary consumers were all positively correlated with stream‐water DIP. 3. Despite the positive correlation between primary consumer production and DIP, there was no correlation between macroinvertebrate predator production and either total or primary consumer macroinvertebrate production. This was observed because DIP was positively correlated with the production of non‐insect macroinvertebrate taxa assumed to be relatively unavailable for macroinvertebrate predator consumption. After removing production of these taxa, we observed a strong positive correlation between macroinvertebrate predator production and production of available prey. 4. Our results suggest that urban NPS pollution not only affects macroinvertebrate community structure, but also alters secondary production and trophic‐level dynamics. Differences in taxon production in our study indicate the potential for altered energy flow through stream food webs and potential effects on subsidies of aquatic insect prey to riparian food webs.  相似文献   

13.
Invasive species are expected to experience a unique combination of high genetic drift due to demographic factors while also experiencing strong selective pressures. The paradigm that reduced genetic diversity should limit the evolutionary potential of invasive species, and thus, their potential for range expansion has received little empirical support, possibly due to the choice of genetic markers. Our goal was to test for effects of genetic drift and selection at functional genetic markers as they relate to the invasion success of two paired invasive goby species, one widespread (successful) and one with limited range expansion (less successful). We genotyped fish using two marker types: single nucleotide polymorphisms (SNPs) in known‐function, protein‐coding genes and microsatellites to contrast the effects of neutral genetic processes. We identified reduced allelic variation in the invaded range for the less successful tubenose goby. SNPs putatively under selection were responsible for the observed differences in population structure between marker types for round goby (successful) but not tubenose goby (less successful). A higher proportion of functional loci experienced divergent selection for round goby, suggesting increased evolutionary potential in invaded ranges may be associated with round goby's greater invasion success. Genes involved in thermal tolerance were divergent for round goby populations but not tubenose goby, consistent with the hypothesis that invasion success for fish in temperate regions is influenced by capacity for thermal tolerance. Our results highlight the need to incorporate functional genetic markers in studies to better assess evolutionary potential for the improved conservation and management of species.  相似文献   

14.
Theories of plant invasion based on enemy release in a new range assume that selection exerted by specialist herbivores on defence traits should be reduced, absent, or even selected against in the new environment. Here, we measured phenotypic selection on atropine and scopolamine concentration of Datura stramonium in eight native (Mexico) and 14 non‐native (Spain) populations. Native populations produced between 20 and 40 times more alkaloid than non‐native populations (atropine: 2.0171 vs. 0.0458 mg/g; scopolamine: 1.004 vs. 0.0488 mg/g, respectively). Selection on alkaloids was negative for atropine and positive for scopolamine concentration in both ranges. However, the effect sizes of selection gradients were only significant in the native range. Our results support the assumption that the reduction of plant defence in the absence of the plant's natural enemies in invasive ranges is driven by natural selection.  相似文献   

15.
1. The aerial surface of plants is a habitat for large and diverse microbial communities; termed the phyllosphere. These microbes are unavoidably consumed by herbivores, and while the entomopathogens are well studied, the impact of non‐pathogenic bacteria on herbivore life history is less clear. 2. Previous work has suggested that consumption of non‐entomopathogenic bacteria induces a costly immune response that might decrease the risk of infection. However, we hypothesised that insect herbivores should be selective in how they respond to commonly encountered non‐pathogenic bacteria on their host plants to avoid unnecessary and costly immune responses. 3. An ecologically realistic scenario was used in which we fed cabbage looper, Trichoplusia ni Hübner, larvae on cabbage or cucumber leaves treated with the common non‐entomopathogenic phyllosphere bacteria, Pseudomonas fluorescens and P. syringae. Their constitutive immunity and resistance to a pathogenic bacterium (Bacillus thuringiensis; Bt) and a baculovirus (T. ni single nucleopolyhedrovirus) were then examined. 4. While feeding on bacteria‐treated leaves reduced the growth rate and condition of T. ni, there was no effect on immunity (haemolymph antibacterial and phenoloxidase activities and haemocyte numbers). Phyllosphere bacteria weakly affected the resistance of T. ni to Bt but the direction of this effect was concentration dependent; resistance to the virus was unaffected. Host plant had an impact, with cucumber‐fed larvae being more susceptible to Bt. 5. The lack of evidence for a costly immune response to non‐entomopathogenic bacteria suggests that T. ni are probably adapted to consuming common phyllosphere bacteria, and highlights the importance of the evolutionary history of participants in multi‐trophic interactions.  相似文献   

16.
17.
Yantao Chen  Jiandong Ding 《Proteins》2010,78(9):2090-2100
To explore the role of non‐native interactions in the helix‐coil transition, a detailed comparison between a Gō‐like model and a non‐Gō model has been performed via lattice Monte Carlo simulations. Only native hydrogen bonding interactions occur in the Gō‐like model, and the non‐native ones with sequence interval more than 4 is also included into the non‐Gō model. Some significant differences between the results from those two models have been found. The non‐native hydrogen bonds were found most populated at temperature around the helix‐coil transition. The rearrangement of non‐native hydrogen bonds into native ones in the formation of α‐helix leads to the increase of susceptibility of chain conformation, and even two peaks of susceptibility of radius of gyration versus temperature exist in the case of non‐Gō model for a non‐short peptide, while just a single peak exists in the case of Gō model for a single polypeptide chain with various chain lengths. The non‐native hydrogen bonds have complicated the temperature‐dependence of Zimm‐Bragg nucleation constant. The increase of relative probability of non‐native hydrogen bonding for long polypeptide chains leads to non‐monotonous chain length effect on the transition temperature. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Morphological and chemical attributes of diaspores in myrmecochorous plants have been shown to affect seed dispersal by ants, but the relative importance of these attributes in determining seed attractiveness and dispersal success is poorly understood. We explored whether differences in diaspore morphology, elaiosome fatty acids, or elaiosome phytochemical profiles explain the differential attractiveness of five species in the genus Trillium to eastern North American forest ants. Species were ranked from least to most attractive based on empirically‐derived seed dispersal probabilities in our study system, and we compared diaspore traits to test our hypotheses that more attractive species will have larger diaspores, greater concentrations of elaiosome fatty acids, and distinct elaiosome phytochemistry compared to the less attractive species. Diaspore length, width, mass, and elaiosome length were significantly greater in the more attractive species. Using gas chromatography–mass spectrometry, we found significantly higher concentrations of oleic, linoleic, hexadecenoic, stearic, palmitoleic, and total fatty acids in elaiosomes of the more attractive species. Multivariate assessments revealed that elaiosome phytochemical profiles, identified through liquid chromatography–mass spectrometry, were more homogeneous for the more attractive species. Random forest classification models (RFCM) identified several elaiosome phytochemicals that differed significantly among species. Random forest regression models revealed that some of the compounds identified by RFCM, including methylhistidine (α‐amino acid) and d‐glucarate (carbohydrate), were positively related to seed dispersal probabilities, while others, including salicylate (salicylic acid) and citrulline (L‐α‐amino acid), were negatively related. These results supported our hypotheses that the more attractive species of Trillium—which are geographically widespread compared to their less attractive, endemic congeners—are characterized by larger diaspores, greater concentrations of fatty acids, and distinct elaiosome phytochemistry. Further advances in our understanding of seed dispersal effectiveness in myrmecochorous systems will benefit from a portrayal of dispersal unit chemical and physical traits, and their combined responses to selection pressures.  相似文献   

19.
1. There is an ongoing debate about the relative importance of top‐down and bottom‐up regulation of herbivore dynamics in the wild. Secondary metabolites, produced by plants, have negative effects on survival and growth of some herbivore species, causing bottom‐up regulation of population dynamics. Herbivore natural enemies may use plant secondary metabolites as cues to find their prey, but their survival and reproduction can also be influenced by the upward cascade of secondary metabolites through the food web. Thus plant chemistry might also affect herbivore populations by mediating top‐down regulation. 2. We investigated the influence of heritable variation in aliphatic glucosinolates, a class of secondary metabolites produced by Brassica plants, on the relative importance of top‐down and bottom‐up regulation of Brevicoryne brassicae (mealy cabbage aphid) colonies in natural Brassica oleracea (wild cabbage) populations. We manipulated natural enemy pressure on plants differing in their glucosinolate profiles, and monitored aphid colony growth and disperser production. 3. Aphid colony sizes were significantly smaller on plants producing sinigrin, compared with plants producing alternative aliphatic glucosinolates. Aphid natural enemy numbers correlated with aphid colony size, but there was no additional effect of the plants' chemical phenotype on natural enemy abundance. Furthermore, experimental reduction of natural enemy pressure had no effect on aphid colony size or production of winged dispersers. 4. Our results provide evidence for glucosinolate‐mediated, bottom‐up regulation of mealy cabbage aphid colonies in natural populations, but we found no indication of top‐down regulation. We emphasise that more studies of these processes should focus on tritrophic interactions in the wild.  相似文献   

20.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号