首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella.  相似文献   

2.
Bartonella infections from wild mice and voles (Apodemus flavicollis, Mi. oeconomus, Microtus arvalis and Myodes glareolus) were sampled from a forest and old-field habitats of eastern Poland; a complex network of Bartonella isolates, referrable to B. taylorii, B. grahamii, B. birtlesii and B. doshiae, was identified by the sequencing of a gltA fragment, comparable to previous studies of Bartonella diversity in rodents. Nested clade analysis showed that isolates could be assigned to zero- and one-step clades which correlated with host identity and were probably the result of clonal expansion; however, sequencing of other housekeeping genes (rpoB, ribC, ftsZ, groEl) and the 16S RNA gene revealed a more complex situation with clear evidence of numerous recombinant events in which one or both Bartonella parents could be identified. Recombination within gltA was found to have generated two distinct variant clades, one a hybrid between B. taylorii and B. doshiae, the other between B. taylorii and B. grahamii. These recombinant events characterised the differences between the two-step and higher clades within the total nested cladogram, involved all four species of Bartonella identified in this work and appear to have played a dominant role in the evolution of Bartonella diversity. It is clear, therefore, that housekeeping gene phylogenies are not robust indicators of Bartonella diversity, especially when only a single gene (gltA or 16S RNA) is used. Bartonella clades infecting Microtus were most frequently involved in recombination and were most frequently tip clades within the cladogram. The role of Microtus in influencing the frequency of Bartonella recombination remains unknown.  相似文献   

3.
The aim of this study was to investigate the occurrence and molecular characteristics of Bartonella infections in small rodents in the Shangdang Basin, China. Small rodents were captured using snap traps, and their liver, spleen, and kidney tissues were harvested for Bartonella detection and identification using a combination of real-time PCR of the ssrA gene (296 bp) and conventional PCR and sequencing of the gltA gene (379 bp). Results showed that 55 of 147 small rodents to be positive for Bartonella, with a positivity rate of 37.41%, and 95% confidence interval of 29.50%- 45.33%. While the positivity rate across genders (42.62% in males and 33.72% in females, χ2 = 1.208, P = 0.272) and tissues (28.57% in liver, 33.59% in spleen, and 36.76% in kidney, χ2 = 2.197, P = 0.333) of small rodents was not statistically different, that in different habitats (5.13% in villages, 84.44% in forests, and 54.17% in farmlands, χ2 = 80.105, P<0.001) was statistically different. There were 42 Bartonella sequences identified in six species, including 30 B. grahamii, three B. phoceensis, two B. japonica, two B. queenslandensis, one B. fuyuanensis and four unknown Bartonella species from Niviventer confucianus, Apodemus agrarius and Tscherskia triton. In addition to habitat, Bartonella species infection could be affected by the rodent species as well. Among the Bartonella species detected in this area, B. grahamii was the dominant epidemic species (accounting for 71.43%). B. grahamii exhibited four distinct clusters, and showed a certain host specificity. In addition, 11 haplotypes of B. grahamii were observed using DNASP 6.12.03, among which nine haplotypes were novel. Overall, high occurrence and genetic diversity of Bartonella were observed among small rodents in the Shangdang Basin; this information could potentially help the prevention and control of rodent-Bartonella species in this area.  相似文献   

4.
Host-specificity is an intrinsic feature of many bacterial pathogens, resulting from a long history of co-adaptation between bacteria and their hosts. Alpha-proteobacteria belonging to the genus Bartonella infect the erythrocytes of a wide range of mammal orders, including rodents. In this study, we performed genetic analysis of Bartonella colonizing a rodent community dominated by bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus) in a French suburban forest to evaluate their diversity, their capacity to recombine and their level of host specificity. Following the analysis of 550 rodents, we detected 63 distinct genotypes related to B. taylorii, B. grahamii, B. doshiae and a new B. rochalimae-like species. Investigating the most highly represented species, we showed that B. taylorii strain diversity was markedly higher than that of B. grahamii, suggesting a possible severe bottleneck for the latter species. The majority of recovered genotypes presented a strong association with either bank voles or wood mice, with the exception of three B. taylorii genotypes which had a broader host range. Despite the physical barriers created by host specificity, we observed lateral gene transfer between Bartonella genotypes associated with wood mice and Bartonella adapted to bank voles, suggesting that those genotypes might co-habit during their life cycle.  相似文献   

5.
Bartonella are facultative intracellular Gram‐negative bacteria, transmitted mainly by hematophagous arthropods, and the rodents act as a natural reservoir. Different species of Bartonella associated with rodents have been implicated as causing human disease. Studies from Argentina are scarce and no Bartonella from fleas have been reported previously. The present study investigated the presence of Bartonella spp. in fleas associated with sigmodontine rodents in four localities of the Santa Cruz Province, Argentina. In total, 51 fleas (four species) were analysed of which 41.2% were found to be positive for the gltA gene fragment via a nested polymerase chain reaction. All positive fleas were of the species Neotyphloceras crackensis from three different localities. Eight of the 21 amplified samples were sequenced, and the presence of three different genotypes was detected with an identity of 95.5–98.8% amongst themselves. Bartonella genotypes from American rodents and rodent fleas were recovered in a monophyletic group. Similarly, most of the Peruvian and all Argentinean variants constitute a natural group sister of the American remainder. The importance of the Bartonella spp. with respect to public health is unknown, although future studies could provide evidence of the possible involvement of N. crackensis in the Bartonella transmission cycles.  相似文献   

6.
To clarify the relationship between Bartonella grahamii strains and both the rodent host species and the geographic location of the rodent habitat, we have investigated 31 B. grahamii strains from ten rodent host species from Asia (Japan and China), North America (Canada and the USA), and Europe (Russia and the UK). On the basis of multi-locus sequencing analysis of 16S rRNA, ftsZ, gltA, groEL, ribC, and rpoB, the strains were classified into two large groups, an Asian group and an American/European group. In addition, the strains examined were clearly clustered according to the geographic locations where the rodents had been captured. In the phylogenetic analysis based on gltA, the Japanese strains were divided into two subgroups: one close to strains from China, and the other related to strains from Far Eastern Russia. Thus, these observations suggest that the B. grahamii strains distributed in Japanese rodents originated from two different geographic regions. In the American/European group, B. grahamii from the North American continent showed an ancestral lineage and strict host specificity; by contrast, European strains showed low host specificity. The phylogenetic analysis and host specificity of B. grahamii raise the possibility that B. grahamii strains originating in the North American continent were distributed to European countries by adapting to various rodent hosts. An erratum to this article can be found at  相似文献   

7.
Fleas collected from rodents in the Negev Desert in southern Israel were molecularly screened for Bartonella species. A total of 1,148 fleas, collected from 122 rodents belonging to six species, were pooled in 245 pools based on flea species, sex, and rodent host species. Two Bartonella gene fragments, corresponding to RNA polymerase B (rpoB) and citrate synthase (gltA), were targeted, and 94 and 74 flea pools were found positive by PCR, respectively. The Bartonella 16S-23S internal transcribed spacer (ITS) region was also targeted, and 66 flea pools were found to be positive by PCR. Sixteen different Bartonella gltA genotypes were detected in 94 positive flea pools collected from 5 different rodent species, indicating that fleas collected from each rodent species can harbor several Bartonella genotypes. Based on gltA analysis, identified Bartonella genotypes were highly similar or identical to strains previously detected in rodent species from different parts of the world. A gltA fragment 100% similar to Bartonella henselae was detected in one flea pool. Another 2 flea pools contained gltA fragments that were closely related to B. henselae (98% similarity). The high sequence similarities to the zoonotic pathogen B. henselae warrant further investigation.Bartonellae are small Gram-negative bacilli belonging to the alpha-2 subdivision of the Proteobacteria. Different Bartonella species were detected in a wide range of vertebrate animals. There are currently 30 known species or subspecies, among which 14 have been associated with human diseases (7). Bartonella organisms are parasites of mammalian erythrocytes and endothelial cells and are transmitted by fleas and lice and potentially by other blood-feeding arthropods such as ticks and flies (2). Infection in the natural host commonly causes a chronic bacteremia, which is asymptomatic in most cases.Rodents are being extensively studied and were found to have a high prevalence of Bartonella infection, with a high diversity of Bartonella spp. and strains (3). The close contacts between human and rodent populations around the world create excellent conditions for transmission of Bartonella spp. from animals to humans (28). The transmission routes of Bartonella bacteria by arthropod vectors among rodents and between rodents and other mammalian hosts have public health implications. In order to understand the extent to which rodents serve as source of human infections, investigations of rodent-borne Bartonella are essential (28). A few cases of human infections with Bartonella bacteria of rodent origin have been reported: B. elizabethae was associated with endocarditis, B. washoensis was associated with cases of myocarditis and meningitis, B. vinsonii subsp. arupensis was reported to cause fever and neurologic symptoms, and B. grahamii was isolated from the intraocular fluids of a patient with neuroretinitis (5, 11, 12, 25, 29).An earlier survey carried out in the Tel Aviv region, Israel, demonstrated the occurrence of Bartonella strains closely related to B. elizabethae and B. tribocorum in commensal rats (Rattus rattus) (8). Another study has surveyed wild rodents and their fleas for Bartonella spp. in 19 geographical locations in Israel from the Upper Galilee in the north to Beer Sheba in the south. Bartonella DNA was detected in spleen samples of 19 out of 79 (24%) black rats (R. rattus), in 1 of 4 (25%) Cairo spiny mice (Acomys cahirinus), and in 15 of 34 (44%) flea pools collected from black rats (R. rattus) (21). The objectives of the current study were to screen fleas collected from rodents inhabiting the Negev Desert south to Beer Sheba for Bartonella infection and to compare Bartonella prevalences between male and female fleas.  相似文献   

8.
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.  相似文献   

9.
Bartonellae are emerging vector-borne pathogens infecting erythrocytes and endothelial cells of various domestic and wild mammals. Blood samples were collected from domestic and wild canids in Iraq under the United States Army zoonotic disease surveillance program. Serology was performed using an indirect immunofluorescent antibody test for B. henselae, B. clarridgeiae, B. vinsonii subsp. berkhoffii and B. bovis. Overall seroprevalence was 47.4% in dogs (n = 97), 40.4% in jackals (n = 57) and 12.8% in red foxes (n = 39). Bartonella species DNA was amplified from whole blood and representative strains were sequenced. DNA of a new Bartonella species similar to but distinct from B. bovis, was amplified from 37.1% of the dogs and 12.3% of the jackals. B. vinsonii subsp. berkhoffii was also amplified from one jackal and no Bartonella DNA was amplified from foxes. Adjusting for age, the odds of dogs being Bartonella PCR positive were 11.94 times higher than for wild canids (95% CI: 4.55–31.35), suggesting their role as reservoir for this new Bartonella species. This study reports on the prevalence of Bartonella species in domestic and wild canids of Iraq and provides the first detection of Bartonella in jackals. We propose Candidatus Bartonella merieuxii for this new Bartonella species. Most of the Bartonella species identified in sick dogs are also pathogenic for humans. Therefore, seroprevalence in Iraqi dog owners and bacteremia in Iraqi people with unexplained fever or culture negative endocarditis requires further investigation as well as in United States military personnel who were stationed in Iraq. Finally, it will also be essential to test any dog brought back from Iraq to the USA for presence of Bartonella bacteremia to prevent any accidental introduction of a new Bartonella species to the New World.  相似文献   

10.
Pathogens use diverse pathways to infect host populations by vertical and/or horizontal routes. Horizontal transmission of bacteria belonging to the Bartonella genus via haematophagous vectors is well known. Vertical transmission of Bartonella species was also suggested to occur but its routes remain to be unveiled. In a previous study, we showed the absence of transovarial transmission of Bartonella species OE 1‐1 in Xenopsylla ramesis fleas, and that fleas feeding on Bartonella‐positive jirds produced Bartonella‐positive gut voids. This current study aimed to investigate whether vertical nontransovarial transmission of Bartonella occurs in fleas. For this aim, the X. ramesis–Bartonella sp. OE 1‐1 model was used. Four groups of fleas including Bartonella‐positive and Bartonella‐negative female fleas and larval offspring had access to either Bartonella‐negative or Bartonella‐positive gut voids and faeces. Sixteen per cent of flea offspring that had access to Bartonella‐positive faeces and gut voids became Bartonella positive. Our findings demonstrate that Bartonella‐positive flea faeces and gut voids are proper infection sources for flea larvae and indicate that vertical nontransovarial transmission of bartonellae occurs in fleas. This information broadens our understanding of Bartonella transmission routes in flea vectors and enlightens pathways of bartonellae transmission and maintenance in flea populations in nature.  相似文献   

11.
Bartonella species are recognized globally as emerging zoonotic pathogens. Small mammals such as rodents and shrews are implicated as major natural reservoirs for these microbial agents. Nevertheless, in several tropical countries, like India, the diversity of Bartonella in small mammals remain unexplored and limited information exists on the natural transmission cycles (reservoirs and vectors) of these bacteria. Using a multi-locus sequencing approach, we investigated the prevalence, haplotype diversity, and phylogenetic affinities of Bartonella in small mammals and their associated mites in a mixed-use landscape in the biodiverse Western Ghats in southern India. We sampled 141 individual small mammals belonging to eight species. Bartonella was detected in five of the eight species, including three previously unknown hosts. We observed high interspecies variability of Bartonella prevalence in the host community. However, the overall prevalence (52.5%) and haplotype diversity (0.9) was high for the individuals tested. Of the seven lineages of Bartonella identified in our samples, five lineages were phylogenetically related to putative zoonotic species–B. tribocorum, B. queenslandensis, and B. elizabethae. Haplotypes identified from mites were identical to those identified from their host species. This indicates that these Bartonella species may be zoonotic, but further work is necessary to confirm whether these are pathogenic and pose a threat to humans. Taken together, these results emphasize the presence of hitherto unexplored diversity of Bartonella in wild and synanthropic small mammals in mixed-use landscapes. The study also highlights the necessity to assess the risk of spillover to humans and other incidental hosts.  相似文献   

12.
Among 1,341 blood samples from rodents that were trapped in Southeast Asia between 2008 and 2010, we found a prevalence of Bartonella infection ranging from 9.6 to 11.9%. Bartonella species identified (143 isolates) included B. elizabethae, B. coopersplainsensis, B. phoceensis, B. queenslandensis, B. rattimassiliensis, B. tribocorum, and three new putative Bartonella species.  相似文献   

13.
Cat scratch disease is the most common zoonotic infection caused by Bartonella bacteria. Among the many mammals infected with Bartonella spp., cats represent a large reservoir for human infection, as they are the main reservoir for Bartonella henselae, Bartonella clarridgeiae and Bartonella koehlerae. Bartonella spp. are vector‐borne bacteria, and transmission of B. henselae by cat fleas occurs mainly through infected flea faeces, although new potential vectors (ticks and biting flies) have been identified. Dogs are also infected with various Bartonella species and share with humans many of the clinical signs induced by these infections. Although the role of dogs as source of human infection is not yet clearly established, they represent epidemiological sentinels for human exposure. Present knowledge on the aetiology, clinical features and epidemiological characteristics of bartonellosis is presented.  相似文献   

14.
Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes.  相似文献   

15.
Emerging pathogens that originate from invasive species have caused numerous significant epidemics. Some bacteria of genus Bartonella are rodent‐borne pathogens that can cause disease in humans and animals alike. We analyzed gltA sequences of 191 strains of rat‐associated bartonellae from 29 rodent species from 17 countries to test the hypotheses that this bacterial complex evolved and diversified in Southeast Asia before being disseminated by commensal rats Rattus rattus (black rat) and Rattus norvegicus (Norway rat) to other parts of the globe. The analysis suggests that there have been numerous dispersal events within Asia and introductions from Asia to other regions, with six major clades containing Southeast Asian isolates that appear to have been dispersed globally. Phylogeographic analyses support the hypotheses that these bacteria originated in Southeast Asia and commensal rodents (R. rattus and R. norvegicus) play key roles in the evolution and dissemination of this Bartonella complex throughout the world.  相似文献   

16.
Bacteria of the genus Bartonella are facultative intracellular parasites associated with erythrocytes and endothelial cells of mammals. It has become increasingly obvious that bartonellae are highly adapted to a wide variety of mammals. The present paper reviews associations between Bartonella species and rodents, insectivores, bats, predators, ungulates, and marine mammals. We now have new insights into the adaptive mechanisms of bartonellae. These bacteria usually persist in the bodies of certain mammalian species serving as their reservoir hosts, without causing a disease. When bartonellae accidentally infect other mammals, including humans, they may be responsible for a spectrum of different diseases. Several mammalian species are reservoir hosts for Bartonella species that have been identified as pathogenic for humans.  相似文献   

17.
It is becoming increasingly likely that rodents will drive future disease epidemics with the continued expansion of cities worldwide. Though transmission risk is a growing concern, relatively little is known about pathogens carried by urban rats. Here, we assess whether the diversity and prevalence of Bartonella bacteria differ according to the (co)occurrence of rat hosts across New Orleans, LA (NO), where both Norway (Rattus norvegicus) and roof rats (Rattus rattus) are found, relative to New York City (NYC) which only harbors Norway rats. We detected human pathogenic Bartonella species in both NYC and New Orleans rodents. We found that Norway rats in New Orleans harbored a more diverse assemblage of Bartonella than Norway rats in NYC and that Norway rats harbored a more diverse and distinct assemblage of Bartonella compared to roof rats in New Orleans. Additionally, Norway rats were more likely to be infected with Bartonella than roof rats in New Orleans. Flea infestation appears to be an important predictor of Bartonella infection in Norway rats across both cities. These findings illustrate that pathogen infections can be heterogeneous in urban rodents and indicate that further study of host species interactions could clarify variation in spillover risk across cities.  相似文献   

18.
Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.  相似文献   

19.
Cats and their fleas collected in Guatemala were investigated for the presence of Bartonella infections. Bartonella bacteria were cultured from 8.2% (13/159) of cats, and all cultures were identified as B. henselae. Molecular analysis allowed detection of Bartonella DNA in 33.8% (48/142) of cats and in 22.4% (34/152) of cat fleas using gltA, nuoG, and 16S–23S internal transcribed spacer targets. Two Bartonella species, B. henselae and B. clarridgeiae, were identified in cats and cat fleas by molecular analysis, with B. henselae being more common than B. clarridgeiae in the cats (68.1%; 32/47 vs 31.9%; 15/47). The nuoG was found to be less sensitive for detecting B. clarridgeiae compared with other molecular targets and could detect only two of the 15 B. clarridgeiae‐infected cats. No significant differences were observed for prevalence between male and female cats and between different age groups. No evident association was observed between the presence of Bartonella species in cats and in their fleas.  相似文献   

20.
A total of 559 fleas representing four species (Pulex irritans, Ctenocephalides felis, Ctenocephalides canis and Spilopsyllus cuniculi) collected on carnivores (five Iberian lynx Lynx pardinus, six European wildcat Felis silvestris, 10 common genet Genetta genetta, three Eurasian badger Meles meles, 22 red fox Vulpes vulpes, 87 dogs and 23 cats) in Andalusia, southern Spain, were distributed in 156 pools of monospecific flea from each carnivore, and tested for Bartonella infection in an assay based on polymerase chain reaction (PCR) amplification of the 16 S–23 S rRNA intergenic spacer region. Twenty‐one samples (13.5%) were positive and the sequence data showed the presence of four different Bartonella species. Bartonella henselae was detected in nine pools of Ctenocephalides felis from cats and dogs and in three pools of Ctenocephalides canis from cats; Bartonella clarridgeiae in Ctenocephalides felis from a cat, and Bartonella alsatica in Spilopsyllus cuniculi from a wildcat. DNA of Bartonella sp., closely related to Bartonella rochalimae, was found in seven pools of Pulex irritans from foxes. This is the first detection of B. alsatica and Bartonella sp. in the Iberian Peninsula. All of these Bartonella species have been implicated as agents of human diseases. The present survey confirms that carnivores are major reservoirs for Bartonella spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号