共查询到20条相似文献,搜索用时 0 毫秒
1.
Tiaden A Spirig T Weber SS Brüggemann H Bosshard R Buchrieser C Hilbi H 《Cellular microbiology》2007,9(12):2903-2920
Legionella pneumophila is an opportunistic human pathogen that replicates within environmental amoebae including Acanthamoeba castellanii and Dictyostelium discoideum. The Icm/Dot type IV secretion system promotes phagocytosis and intracellular replication of L. pneumophila in an endoplasmic reticulum-derived 'Legionella-containing vacuole' (LCV). L. pneumophila adopts a biphasic life cycle consisting of a replicative growth phase and a transmissive (stationary) phase, the latter of which is characterized by the preferential expression of genes required for motility and virulence. A bioinformatic analysis of the L. pneumophila genome revealed a gene cluster homologous to the Vibrio cholerae cqsAS genes, encoding a putative quorum sensing autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a novel response regulator (lqsR). We report here that an L. pneumophila lqsR deletion mutant grew in broth with the same rate as wild-type bacteria, but entered the replicative growth phase earlier. Overexpression of lqsR led to an elongated morphology of the bacteria. The lqsR mutant strain was found to be more salt-resistant and impaired for intracellular growth in A. castellanii, D. discoideum and macrophages, formation of the ER-derived LCV and toxicity. Moreover, L. pneumophila lacking LqsR, as well as strains lacking the stationary sigma factor RpoS or the two-component response regulator LetA, were phagocytosed less efficiently by A. castellanii, D. discoideum or macrophages. The expression of lqsR was dependent on RpoS and, to a lesser extent, also on LetA. DNA microarray experiments revealed that lqsR regulates the expression of genes involved in virulence, motility and cell division, consistent with a role for LqsR in the transition from the replicative to the transmissive (virulent) phase. Our findings indicate that LqsR is a novel pleiotropic regulator involved in RpoS- and LetA-controlled interactions of L. pneumophila with phagocytes. 相似文献
2.
3.
Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium 总被引:2,自引:0,他引:2
Bacterial flagellins are potent inducers of innate immunity. Three signaling pathways have been implicated in the sensing of flagellins; these involve toll-like receptor 5 (TLR5) and the cytosolic proteins Birc1e/Naip5 and Ipaf. Although the structural basis of TLR5-flagellin interaction is known, little is known about how flagellin enters the host cell cytosol to induce signaling via Birc1e/Naip5 and Ipaf. Here we demonstrate for the first time the translocation of bacterial flagellin into the cytosol of host macrophages by the vacuolar pathogen, Salmonella enterica serotype Typhimurium. Translocation of flagellin into the host cell cytosol was directly demonstrated using beta-lactamase reporter constructs. Flagellin translocation required the Salmonella Pathogenicity Island 1 Type III secretion system (SPI-1 T3SS) but not the flagellar T3SS. 相似文献
4.
Amal O. Amer 《Cellular microbiology》2010,12(2):140-147
Legionella pneumophila has become a model system to decipher the non‐apoptotic functions of caspases and their role in immunity. In permissive cells, the L. pneumophila‐containing vacuole evades endosomal traffic and is remodelled by the endoplasmic reticulum. Evasion of the endosomes is mediated by the Dot/Icm type IV secretion system. Upon L. pneumophila infection of genetically restrictive cells such as wild‐type (WT) C57Bl/6J murine macrophages, flagellin is sensed by the NOD‐like receptor Nlrc4 leading to caspase‐1 activation by the inflammasome complex. Then, caspase‐7 is activated downstream of the Nlrc4 inflammasome, promoting non‐apoptotic functions such as L. pneumophila‐containing phagosome maturation and bacterial degradation. Interestingly, caspase‐3 is activated in permissive cells during early stages of infection. However, caspase‐3 activation does not lead to apoptosis until late stages of infection because it is associated with potent Dot/Icm‐mediated anti‐apoptotic stimuli that render the infected cells resistant to external apoptotic inducers. Therefore, the role of caspase‐1 and non‐apoptotic functions of executioner caspases are temporally and spatially modulated during infection by L. pneumophila, which determine permissiveness to intracellular bacterial proliferation. This review will examine the novel activation pathways of caspases by L. pneumophila and discuss their role in genetic restriction and permissiveness to infection. 相似文献
5.
The ability of Legionella pneumophila to cause legionnaires' disease is dependent on its capacity to replicate within cells in the alveolar spaces. The bacteria kill mammalian cells in two phases: induction of apoptosis during the early stages of infection, followed by an independent and rapid necrosis during later stages of the infection, mediated by a pore-forming activity. In the environment, L. pneumophila is a parasite of protozoa. The molecular mechanisms by which L. pneumophila kills the protozoan cells, after their exploitation for intracellular proliferation, are not known. In an effort to decipher these mechanisms, we have examined induction of both apoptosis and necrosis in the protozoan Acanthamoeba polyphaga upon infection by L. pneumophila. Our data show that, although A. polyphaga undergoes apoptosis following treatment with actinomycin D, L. pneumophila does not induce apoptosis in these cells. Instead, intracellular L. pneumophila induces necrotic death in A. polyphaga, which is mediated by the pore-forming activity. Mutants of L. pneumophila defective in expression of the pore-forming activity are indistinguishable from the parental strain in intracellular replication within A. polyphaga. The parental strain bacteria cause necrosis-mediated lysis of all the A. polyphaga cells within 48 h after infection, and all the intracellular bacteria are released into the tissue culture medium. In contrast, all cells infected by the mutants remain intact, and the intracellular bacteria are 'trapped' within A. polyphaga after the termination of intracellular replication. Failure to exit the host cell after termination of intracellular replication results in a gradual decline in the viability of the mutant strain bacteria within A. polyphaga starting 48h after infection. Our data show that the pore-forming activity of L. pneumophila is not required for intracellular bacterial replication within A. polyphaga but is required for killing and exiting the protozoan host upon termination of intracellular replication. 相似文献
6.
The Legionella pneumophila CpxRA two‐component regulatory system: new insights into CpxR's function as a dual regulator and its connection to the effectors regulatory network 下载免费PDF全文
Legionella pneumophila utilizes the Icm/Dot type‐IV secretion system to translocate approximately 300 effector proteins into host cells, and the CpxRA two‐component system (TCS) was previously shown to regulate the expression of several of these effectors. In this study, we expanded the pool of L. pneumophila CpxR‐regulated genes to 38, including 27 effector‐encoding genes. Our study demonstrates for the first time that the CpxR dual regulator has different requirements for activation and repression of target genes. These differences include the positioning of the CpxR regulatory element relative to the promoter element, and the effect of CpxR phosphate donors on the expression of CpxR target genes. In addition, unlike most response regulators, a mutant form of the L. pneumophila CpxR which cannot be phosphorylated was found to self‐interact, and to repress gene expression similarly to wild‐type CpxR, even though its ability to activate gene expression was reduced. Moreover, the CpxRA TCS was found to activate the expression of LetE which was found to function as a connector protein between the CpxRA TCS and the LetAS‐RsmYZ‐CsrA regulatory cascade. Our results show that CpxR plays a major role in L. pneumophila pathogenesis gene expression and functions as part of a regulatory network. 相似文献
7.
Interactions between host sex and age of exposure modify the virulence–transmission trade‐off 下载免费PDF全文
The patterns of immunity conferred by host sex or age represent two sources of host heterogeneity that can potentially shape the evolutionary trajectory of disease. With each host sex or age encountered, a pathogen's optimal exploitative strategy may change, leading to considerable variation in expression of pathogen transmission and virulence. To date, these host characteristics have been studied in the context of host fitness alone, overlooking the effects of host sex and age on the fundamental virulence–transmission trade‐off faced by pathogens. Here, we explicitly address the interaction of these characteristics and find that host sex and age at exposure to a pathogen affect age‐specific patterns of mortality and the balance between pathogen transmission and virulence. When infecting age‐structured male and female Daphnia magna with different genotypes of Pasteuria ramosa, we found that infection increased mortality rates across all age classes for females, whereas mortality only increased in the earliest age class for males. Female hosts allowed a variety of trade‐offs between transmission and virulence to arise with each age and pathogen genotype. In contrast, this variation was dampened in males, with pathogens exhibiting declines in both virulence and transmission with increasing host age. Our results suggest that differences in exploitation potential of males and females to a pathogen can interact with host age to allow different virulence strategies to coexist, and illustrate the potential for these widespread sources of host heterogeneity to direct the evolution of disease in natural populations. 相似文献
8.
The Dot/Icm system is a type IVb secretion system used by Legionella pneumophila to modulate vesicular transport in both protozoan and mammalian host cells. It has been shown that proteins and processes that are highly conserved in all eukaryotic cells are targets for some of the proteins injected by the Dot/Icm system. For example, the Legionella protein RalF was shown previously to be a Dot/Icm substrate that functions as a guanine nucleotide exchange factor (GEF) for the Arf family of eukaryotic small GTP-binding proteins. Here we show that ectopic production of the RalF protein in Saccharomyces cerevisiae interferes with yeast growth. Inhibition of yeast growth was found to be dependent on the ability of RalF to function as an Arf-GEF in vivo. The possibility that other Dot/Icm substrate proteins would have the capacity to interfere with yeast growth was used as a rationale to screen plasmid libraries containing random fragments of Legionella chromosomal DNA positioned downstream of a galactose-inducible promoter. This screen identified Legionella proteins that conferred a conditional growth defect when overproduced by yeast cultured in the presence of galactose. Most of the Legionella proteins identified were determined to be substrates of the Dot/Icm system. This screen led to the identification of a new Dot/Icm substrate protein that was called YlfA, for yeast lethal factor A. A paralogue of YlfA was identified on an unlinked region of the Legionella chromosome and this protein was also translocated by the Dot/Icm system. It was determined that a hydrophobic region near the N-terminus of the YlfA protein and an adjacent region predicted to form a coiled-coil domain were necessary for a biological activity that interfered with yeast growth. The YlfA protein did not decorate the Legionella-containing vacuole during the first 7 h of infection but could be observed on the endoplasmic reticulum (ER)-derived replicative vacuole and on punctate structures throughout the host cell at later stages. Ectopic production of YlfA in mammalian cells revealed that the N-terminal hydrophobic domain in YlfA was able to localize the protein to early secretory organelles, including endoplasmic reticulum. These studies show that yeast genetics can be exploited to identify and characterize proteins that are injected into host cells by bacterial pathogens that utilize type IV secretion systems for pathogenesis. 相似文献
9.
Rapid detection of viable Legionella pneumophila in tap water by a qPCR and RT‐PCR‐based method 下载免费PDF全文
R. Boss A. Baumgartner S. Kroos M. Blattner R. Fretz D. Moor 《Journal of applied microbiology》2018,125(4):1216-1225
Aims
A molecular method for a rapid detection of viable Legionella pneumophila of all serogroups in tap water samples was developed as an alternative to the reference method (ISO). Legionellae are responsible for Legionnaires’ disease, a severe pneumonia in humans with high lethality.Methods and Results
The developed method is based on a nutritional stimulation and detection of an increase in precursor 16S rRNA as an indicator for viability. For quantification, DNA was detected by qPCR. This method was compared to the ISO method using water samples obtained from public sports facilities in Switzerland. The sensitivity and specificity were 91 and 97%, respectively, when testing samples for compliance with a microbiological criterion of 1000 cell equivalents per l.Conclusion
The new method is sensitive and specific for Leg. pneumophila and allows results to be obtained within 8 h upon arrival, compared to one week or more by the ISO method.Significance and Impact of the Study
The method represents a useful tool for a rapid detection of viable Leg. pneumophila of all serogroups in water by molecular biology. It can be used as an alternative to the ISO method for official water analysis for legionellae and particularly when a short test time is required. 相似文献10.
11.
12.
A S Lee S Wells A M Delegeane 《Biochemical and biophysical research communications》1986,135(3):942-949
A hamster genomic sequence containing a cell cycle regulatory sequence derived from a histone H3.2 gene was transfected into K12 hamster fibroblasts in the form of plasmid DNA prepared from dam+ E. coli. Analysis of the plasmid DNA recovered 72 hr after the transfection revealed that it was resistant to Mbol but was sensitive to Dpn 1 enzyme digestion, suggesting that this plasmid had retained its dam E. coli methylated sites and was therefore unable to undergo replication following transfection into homologous host cells. These results were discussed with relation to a previously described yeast cell cycle regulatory sequence which was functionally linked to an autonomous replicating sequence and was located near a yeast H2B gene. 相似文献
13.
M. Lomma D. Dervins‐Ravault M. Rolando T. Nora H. J. Newton F. M. Sansom T. Sahr L. Gomez‐Valero M. Jules E. L. Hartland C. Buchrieser 《Cellular microbiology》2010,12(9):1272-1291
The environmental pathogen Legionella pneumophila encodes three proteins containing F‐box domains and additional protein–protein interaction domains, reminiscent of eukaryotic SCF ubiquitin–protein ligases. Here we show that the F‐box proteins of L. pneumophila strain Paris are Dot/Icm effectors involved in the accumulation of ubiquitinated proteins associated with the Legionella‐containing vacuole. Single, double and triple mutants of the F‐box protein encoding genes were impaired in infection of Acanthamoeba castellanii, THP‐1 macrophages and human lung epithelial cells. Lpp2082/AnkB was essential for infection of the lungs of A/J mice in vivo , and bound Skp1, the interaction partner of the SCF complex in mammalian cells, similar to AnkB from strain AA100/130b. Using a yeast two‐hybrid screen and co‐immunoprecipitation analysis we identified ParvB a protein present in focal adhesions and in lamellipodia, as a target. Immunofluorescence analysis confirmed that ectopically expressed Lpp2082/AnkB colocalized with ParvB at the periphery of lamellipodia. Unexpectedly, ubiquitination tests revealed that Lpp2082/AnkB diminishes endogenous ubiquitination of ParvB. Based on these results we propose that L. pneumophila modulates ubiquitination of ParvB by competing with eukaryotic E3 ligases for the specific protein–protein interaction site of ParvB, thereby revealing a new mechanism by which L. pneumophila may employ translocated effector proteins to promote bacterial survival. 相似文献
14.
Crystal structure of the Legionella pneumophila Lpg2936 in complex with the cofactor S‐adenosyl‐L‐methionine reveals novel insights into the mechanism of RsmE family methyltransferases 下载免费PDF全文
Nikos Pinotsis Gabriel Waksman 《Protein science : a publication of the Protein Society》2017,26(12):2381-2391
The methylation of U1498 located in the 16S ribosomal RNA of Escherichia coli is an important modification affecting ribosomal activity. RsmE methyltransferases methylate specifically this position in a mechanism that requires an S‐adenosyl‐L‐methionine (AdoMet) molecule as cofactor. Here we report the structure of Apo and AdoMet‐bound Lpg2936 from Legionella pneumophila at 1.5 and 2.3 Å, respectively. The protein comprises an N‐terminal PUA domain and a C‐terminal SPOUT domain. The latter is responsible for protein dimerization and cofactor binding. Comparison with similar structures suggests that Lpg2936 is an RsmE‐like enzyme that can target the equivalent of U1498 in the L. pneumophila ribosomal RNA, thereby potentially enhancing ribosomal activity during infection‐mediated effector production. The multiple copies of the enzyme found in both structures reveal a flexible conformation of the bound AdoMet ligand. Isothermal titration calorimetry measurements suggest an asymmetric two site binding mode. Our results therefore also provide unprecedented insights into AdoMet/RsmE interaction, furthering our understanding of the RsmE catalytic mechanism. 相似文献
15.
Sa. Bonetta Si. Bonetta E. Ferretti F. Balocco E. Carraro 《Journal of applied microbiology》2010,108(5):1576-1583
Aims: This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real‐time PCR with the conventional culture method. Methods and Results: Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico‐chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real‐time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >104 CFU l?1 was found, and Leg. pneumophila serogroup 1 was isolated from 10·5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual‐free chlorine was found. Conclusions: This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real‐time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. Significance and Impact of the Study: This study indicates that the Italian hotels represent a possible source of risk for Legionnaires’ disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real‐time PCR and culture methods. 相似文献
16.
Berk SG Faulkner G Garduño E Joy MC Ortiz-Jimenez MA Garduño RA 《Applied and environmental microbiology》2008,74(7):2187-2199
The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation. 相似文献
17.
Legionella pneumophila grows in human alveolar macrophages and resides within a phagosome that initially lacks proteins associated with the endocytic pathway. Required for targeting to this unique location is the Dot/Icm complex, which is highly similar to conjugative DNA transfer apparatuses. Here, we show that exposure to three distinct inducing conditions resulted in the formation of a fibrous structure on the bacterial cell surface that contained the DotH and DotO proteins. These conditions included: (i) incubation for 2 h with mouse bone marrow-derived macrophages; (ii) incubation for 2 h in macrophage-conditioned media; or (iii) replication of bacteria for 22 h within macrophages. Introduction of bacteria harbouring the surface-exposed DotH and DotO onto a fresh monolayer resulted in loss of the surface localization of DotH and DotO shortly after uptake. Treatments that resulted in the production of the fibrous structure enhanced the rate at which the bacteria were internalized, but there was no corresponding increase in the efficiency of intracellular growth compared with bacteria that had been cultured in broth using conditions that resulted in maximal intracellular growth. These data indicate that the surface-exposed DotH and DotO on L. pneumophila may act either just before lysis from the macrophage or at the earliest stages of infection, transiently relocating in a fibrous structure on the bacterial cell surface. 相似文献
18.
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host‐use trade‐offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade‐offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria‐phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade‐offs. 相似文献
19.
The process by which Ectocarpus fasciculatus virus type 1 (EfasV‐1) infects zoospores of its brown algal host was studied by electron microscopy. Upon virus attachment to the target cell, the integral membrane component of the viral capsid fuses with the host plasma membrane, and the 140‐nm viral DNA‐protein core enters the cytosol. Within 5 min after infection, particles resembling viral cores appeared in the nucleus. The entry mechanism of EfasV‐1 into the host nucleus remains enigmatic. 相似文献
20.
Kofoed EM Vance RE 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(7):589-598
The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens. 相似文献