首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract We examined post‐fire responses of two sympatric Australian rodents, Pseudomys gracilicaudatus and Rattus lutreolus, as coastal wet heath regenerated following two high intensity wildfires. Pseudomys gracilicaudatus, an early serai‐stage species, recolonized an area burnt in August 1974 after one year, but took only 3 months to recolonize another area following a wildfire in October 1994. Rattus lutreolus, a late serai‐stage specialist, took approximately 3.6 years to recolonize following wildfire in August 1974, but had recolonized after only 4 months following wildfire in October 1994. We suggest that this apparent anomaly is associated with the rate of recovery of vegetation density. When the relative abundance of each species was plotted as a function of vegetation density, the trajectories following the two wildfires were concordant. An implicit relationship exists between time since wildfire and vegetation density. We make this relationship explicit by quantifying cover requirements for each species, and show that it is the resource continuum borne of regenerating vegetation (rather than time per se) that is important in determining the timing of small mammal successional sequences.  相似文献   

3.
Abstract Habitat usage characteristics of two species of native murid rodents, Pseudomys gracilicaudatus and Rattus lutreolus were investigated on an area of coastal heathland at Myall Lakes National Park. A grid of 151 trap stations comprising 17 traplines was positioned across a mosaic of habitats. At each trap station 19 structural vegetation and physical variables known to affect the microdistribution of small mammals were measured. Multivariate statistical procedures identified those microhabitat variables that contribute to individual species' habitat use and habitat partitioning, and reduce potential competition for space. Cluster analysis classified trap stations into one of six habitat types that were mapped on the study area, identifying a heterogeneous assemblage of interlocking habitats. The pattern is a consequence of topographic variation on the site and, to a lesser extent, its fire history. Trapping results show P. gracilicaudatus and R. lutreolus exhibit similar macrohabitat selection, preferring topographically low habitats, with both species predominantly occupying short dense heath with dense sedge cover. The high overlap in macrohabitat use is greatly reduced when considered trap station by trap station, so that discriminant function and multiple regression analyses demonstrate marked microhabitat selection. Elevation was a highly significant variable, accounting for 41% and 27% of the variance in the habitat used by P. gracilicaudatus and R. lutreolus, respectively. This variable represents a soil moisture gradient that determines changes in the floristic and structural components of the biotic environment. Two other structural vegetation variables and vegetation height contributed 30% of the variance in P. gracilicaudatus distribution. Sedge cover was found to be significant and explained 13% of the variance in R. lutreolus distribution. Within-habitat separation was explained best with a linear combination of variables in a discriminant function, rather than by any single variable. Differential microhabitat selection, interference competition and diet separation appear to be the major factors facilitating coexistence of these two species.  相似文献   

4.
饶洁  段丁琪  唐强  马明国  韦杰  贺秀斌 《生态学报》2023,43(16):6649-6660
三峡水库蓄水运行形成的极端生境胁迫深刻改变了消落带植被结构和功能。在消落带横向断面高程梯度上,植被生境具有典型的空间异质性。选取三峡水库典型自然恢复消落带,通过野外调查和室内分析,揭示了消落带自然演替植被的群落构成、物种多样性和生物量随高程梯度的分异特征,系统分析了极端淹水、侵蚀-沉积、土壤环境等生境胁迫类型对消落带植被高程梯度分异的影响。结果表明:①研究消落带适生植被以草本为主,共有15科25种23属,其中禾本科种类较多,但单属单种、单优群落现象明显;一年生和多年生草本分别占52%和48%,且一年生草本多在消落带上部定居,多年生草本主要在消落带下部聚集。②物种多样性指数与高程呈正相关趋势,在145-150m范围内较低,在160-170m范围内较高。③植被生物量为199.68-1211.2g/m2,总体呈现随高程增加而显著增加的趋势;受多种生境因子的复合胁迫影响,生物量随高程存在局部波动。④水库水位变动形成淹水时长、出露时令、淹水强度等是影响消落带植被生物量高程梯度分异的主导因子;侵蚀/沉积过程改变土层厚度、根层土壤持水能力和肥力条件,对植被生长产生重要影响;土壤水分和氮是植被生长的限制性因子。因此,优势生境适宜性物种选育、土壤基质保育和植被格局功能优化是三峡水库消落带植被恢复和生态功能重建的重要任务。  相似文献   

5.
Abstract Using microscopic analysis of faecal pellets, we compared the seasonal and successional patterns of food resource use of two Australian native rodents, the eastern chestnut mouse (Pseudomys gracilicaudatus) and the swamp rat (Rattus lutreolus) in a coastal heathland at Myall Lakes National Park, New South Wales. Using the Mantel test, the diets of the two mammal species were significantly different in autumn and winter but not in spring and summer. Further, the two species showed differential use of resources at the young and middle-aged stages of vegetation succession following fire. The mean dietary overlaps for pairs of individuals between the two species were relatively high in all seasons and successional stages, but they were significantly lower than those for pairs of individuals within each species in autumn and winter, and at the young and middle successional stages. Analysis of dietary niche position (γ) and breadth (β) showed lower γ and larger β for P. gracilicaudatus than for R. lutreolus, confirming previous observations that R. lutreolus is more specialized, and less opportunistic in diet than P. gracilicaudatus. Overall, the dietary separations of the two species were less marked in canonical space than they were for specific seasons and successional stages. These results, together with previous studies, indirectly suggest that while these two mammal species may be partitioning diet in autumn and winter in the middle stages, for spring and summer in the old successional stage they might need to partition habitats to facilitate their coexistence. Our results indicate that the local community is more dynamic and complex than previously thought and that other mechanisms of coexistence (e.g. temporal rotation of food resources) may be operating rather than traditional habitat and diet separation.  相似文献   

6.
Nummi  P.  Pöysä  H.  Elmberg  J.  Sjöberg  K. 《Hydrobiologia》1994,(1):247-252
The mallard (Anas platyrhynchos Linnaeus) is a generalist feeder, breeding in a wide range of habitats, yet showing considerable between site differences in density. Variations in density and habitat use may result from inter- and intea-specific competition, habitat structure or food.We studied habitat selection of the mallard in four regions of Finland and Sweden. In each region, ten lakes were chosen ranging from oligotrophic to eutrophic. Habitat distribution of the mallard did not differ between regions despite variation in the density of the species and congenerics. Mallard density did not correlate with vegetation structure, but increased with food abundance and the number and density of congenerics although there were regional differences in mallard response.  相似文献   

7.
1. Habitat fragmentation is a major threat to biodiversity because it disrupts movement between habitat patches. In addition, arthropod fitness may be reduced in fragmented habitats, e.g. due to reduced prey availability. 2. We studied the relationship of spider body condition with habitat fragmentation, population density, and prey availability. We expected that prey availability and population density of spiders would be affected by landscape composition and patch isolation. Body condition should be enhanced by high prey availability, but negatively affected by population density due to competition. 3. We sampled spiders on 30 groups of cherry trees that varied independently in the level of isolation from other woody habitats and in the percentage of woody habitat within 500 m radius. As a measure of body condition, we used residuals of the relationship between individual body mass/opisthosoma width and prosoma width of the two most common orb‐weaving spider species, Nuctenea umbratica Clerck and Araniella opisthographa Kulczynski. 4. Body condition of A. opisthographa was positively correlated with the abundance of flies, which increased with the percentage of forest in the landscape. In contrast, body condition of N. umbratica was reduced at high population densities, presumably due to intraspecific competition. In addition, body condition and population density of A. opisthographa was lower at isolated sites. 5. Our study suggests that effects of landscape fragmentation on body condition vary strongly between spider species, depending on the relative role of food limitation and intraspecific competition.  相似文献   

8.
SUMMARY 1. A study of microhabitat preferences was conducted on Zingel asper , an endangered endemic species from the Rhône catchment. A generalised linear model allowed us to test statistically the non-random habitat selection and the effect of season and site on this habitat selection.
2. The analysis detected significant preferences for the three physical variables considered: water depth, water velocity and substratum size.
3. A seasonal shift in the substratum size preference was found: preference for stones increasing during the spawning season. Depth preference varied between sites, suggesting a possible plasticity in habitat selection.
4. These results suggest that the availability of suitable physical habitat plays a significant role in determining fish distribution in the River Beaume.  相似文献   

9.
模糊数学方法模拟水库运行影响下鱼类栖息地的变化   总被引:4,自引:0,他引:4  
水库调度改变了河流水文情势,从而使得水生动植物栖息地的空间分布发生明显的变化。针对水库运行对鱼类栖息地的影响,利用模糊数学方法建立栖息地模型,并与水环境模型耦合,分析不同水文情势下鱼类在不同生长期的栖息地变化情况。基于专家分析法建立模糊函数隶属度及规则集,计算栖息地适宜性指数(HSI),提出适宜栖息地宽度指数(HSWI)表征河道内栖息地连通性,并对栖息地变化的有效性进行分析。选取漓江下游的某个复式河道为对象,模拟特征鱼种光倒刺鲃(Spinibarbus hollandi)在典型水文年份中水库不同调节模式下的栖息地变化情况。结果表明,在丰水年及枯水年的产卵期,水库补水明显增加了鱼类适宜栖息地面积,其中高适应性区域面积增幅近50%,而平水年影响较小;水库补水对越冬场的影响则相对微弱,仅增加5%左右。  相似文献   

10.
The species pool hypothesis is applied here to the interpretation of ‘hump-shaped’ (unimodal) species richness patterns along gradients of both habitat fertility and disturbance level (the habitat templet). A ‘left-wall’ effect analogous to that proposed for the evolution of organismal complexity predicts a right-skewed unimodal distribution of historical habitat commonness on both gradients. According to the species pool hypothesis, therefore, the distribution of opportunity for net species accumulation (speciation minus extinction) should also have a corresponding unimodal central tendency on both habitat gradients. Two assumptions of this hypothesis are illustrated with particular reference to highly fertile, relatively undisturbed habitats: (i) such habitats have been relatively uncommon in space and time, thus providing relatively little historical opportunity for the origination of species with the traits necessary for effective competitive ability under these habitat conditions; and (ii) species that have evolved adaptation to these habitats are relatively large, thus imposing fundamental ‘packing’ limitations on the number of species that can ‘fit’ within such habitats. Based on these assumptions, the species pool hypothesis defines two associated predictions that are both supported by available data: (a) resident species richness will be relatively low in highly fertile, relatively undisturbed contemporary habitats; and (b) species sizes within regional floras should display as a right-skewed unimodal (log-normal) distribution. The latter is supported here by an analysis of data for 2,715 species in the vascular flora of northeastern North America.  相似文献   

11.
12.
Abstract.  1. Habitat loss and fragmentation are the main causes of changes in the distribution and abundance of organisms, and are usually considered to negatively affect the abundance and species richness of organisms in a landscape. Nevertheless, habitat loss and fragmentation have often been confused, and the reported negative effects may only be the result of habitat loss alone, with habitat fragmentation having nil or even positive effects on abundance and species richness.
2. Manipulated alfalfa micro-landscapes and coccinellids (Coleoptera: Coccinellidae) are used to test the effects habitat loss (0% or 84%), fragmentation (4 or 16 fragments), and isolation (2 or 6 m between fragments) on the density, species richness, and distribution of native and exotic species of coccinellids.
3. Generally, when considering only the individuals in the remaining fragments, habitat loss had variable effects while habitat fragmentation had a positive effect on the density of two species of coccinellids and on species richness, but did not affect two other species. Isolation usually had no effect. When individuals in the whole landscape were considered, negative effects of habitat loss became apparent for most species, but the positive effects of fragmentation remained only for one species.
4. Native and exotic species of coccinellids did not segregate in the different landscapes, and strong positive associations were found most often in landscapes with higher fragmentation and isolation.
5. The opposing effects of habitat loss and fragmentation may result in a nil global effect; therefore it is important to separate their effects when studying populations in fragmented landscapes.  相似文献   

13.
Most species distribution models (SDMs) assume that habitats are closed, stable and without competition. In that environmental context, it is ecologically correct to assume that members of a species will be distributed in direct relation to the suitability of the habitat, that is, according to the so‐called habitat matching rule. This paper examines whether it is possible to maintain the assumption of the habitat matching rule in the following circumstances: (1) when habitats are connected and organisms can move between them, (2) when there are disturbances and seasonal cycles that generate instability, and (3) when there is inter‐specific and intra‐specific competition. Here I argue that it is possible as long as the following aspects are taken into account. In open habitats at equilibrium, in which habitat selection and competition operate, the habitat matching rule can be applied in some conditions, while competition tends to homogenize the species distribution in other environmental contexts. In the latter case, two methods can be used to incorporate these effects into SDMs: new parameters can be incorporated into the response functions, or the occurrence of proportions of categories of individuals (adult/young, male/female, or dominant/subordinate species in guilds) can be used instead of the occurrence of organisms. The habitat matching rule is not fulfilled in non‐equilibrium environments. The solution to this problem lies in the design of SDMs with two strategies that depend on scale. Locally, the disequilibrium can be encapsulated using average environmental conditions, with sufficiently large cells (in the case of metapopulations) and/or long enough sampling periods (in the case of seasonal cycles). At coarse scales, the use of presence‐only models can in some cases avoid the destabilizing effect of catastrophic historical processes. The matching law is a strong assumption of SDMs because it is based on population ecology theory and the principle of evolution by natural selection.  相似文献   

14.
15.
为了更深入地了解黑嘴松鸡的种群密度及其夜栖地利用情况,以期为后续的黑嘴松鸡保护管理提供科学的理论参考,2017—2018年1—2月采用样线法、定点观察法、样方法、因子测量法、因子分析法、GPS定位等方法,对大兴安岭北坡越冬期黑嘴松鸡的种群密度及夜栖地特征进行了调查分析。分析结果表明:(1)大兴安岭北坡越冬期,黑嘴松鸡种群密度为(1.18—8.06)只/km~2,即每平方千米分布有黑嘴松鸡1—8只;(2)黑嘴松鸡夜栖卧迹长为(52.64±9.28) cm、宽为(26.55±6.91) cm、高为(17.11±3.78) cm;(3)黑嘴松鸡夜栖地利用包括2个尺度3个选择,即大生境尺度内夜栖生境类型选择和小生境尺度内夜栖区选择、夜栖微生境选择;(4)夜栖生境类型对以兴安落叶松为优势树种的针阔混交林具有绝对的选择性(100%);夜栖区对林缘雪地和林中乔木树下的偏好利用较高(75.00%);夜栖微生境选择通过隐蔽因子、应急逃逸因子、温度因子来判定,隐蔽因子包括乔木密度和干扰区距离,选择具有高密度乔木的、远离人为干扰区(约为4.5 km)的区域;应急逃逸因子包括海拔、卧迹头端开阔度、乔木距离,选择高海拔的、卧迹头端具有开阔度的、贴近乔木(小于1 m)的位置;温度因子包括卧迹雪深、卧迹头端方位角,选择保温效果显著的、适合体尺指标的背风点(东南出口)。  相似文献   

16.
对现有的区域植被动态模拟模型进行了改进,使之包含了土地利用分布格局对植被和生态系统相关过程的影响。改进后的模型被用地研究中国东部南北样带(NSTEC)植被和净第一性生产力对未来气候变化的响应。模拟结果显示土地利用格局对未来气候条件下植被分布的变迁和生产力形成过程有非常显著的影响。与没有土地利用约束的情形相比较,土地利用作为限制条件缓减了植被类型之间的竞争,从而减少了模拟的样带区域内常绿阔叶林,但增加了模拟灌木和草地的分布。土地利用约束使得模拟得到的当前条件下的净第一性生产力更为接近实际情况,且未来气候条件下的生产力改变量更为可信。对未来CO2倍增条件下7个大气环流模型预测的气候情景的模拟结果表明:落叶阔叶林将显著增加,但针叶林、灌木和草原的分布将下降。未来气候条件下NSTEC样带的净第一性生产力总量将增加。预测样带北部的净第一性生产力的变化范围大于样带南部。温度变化比降水变化对样带的生产力具有更强的控制。  相似文献   

17.
Abstract. An ability to predict species' sensitivities to habitat loss and fragmentation has important conservation implications, and numerous hypotheses have been proposed to explain interspecific differences observed in human-dominated landscapes. We used occupancy data collected on 32 species of vertebrates (16 mammals and 16 amphibians) in an agricultural landscape of Indiana, USA, to compare hypotheses that focus on different causal mechanisms underlying interspecific variation in responses to habitat alteration: (1) body size; (2) morphology and development; (3) behaviour; (4) niche breadth; (5) proximity to range boundary; and multiple-process models combining main effects and interactions of hypotheses (1)–(2) and (4)–(5). The majority of habitat alteration occurred over a century ago and coincided with extinction of several species; thus, our study dealt only with variation in responses of extant species that often are considered 'resistant' to human modifications of native habitat. Corrected Akaike scores and Akaike weights provided strongest support for models incorporating niche breadth and proximity to range boundary. Measures of dietary and habitat breadth obtained from the literature were negatively correlated with sensitivity to habitat alteration. Additionally, greater sensitivity was observed for species occurring at the periphery of their geographical ranges, especially at northern or western margins. Body size, morphological, developmental and behavioural traits were inferior predictors of tolerance to fragmentation for the species and landscape we examined. Our findings reinforce the importance of niche breadth as a predictor of species' responses to habitat alteration. They also highlight the importance of viewing the effects of habitat loss and fragmentation in a landscape within a biogeographical context that considers a species' level of adaptation to local environmental conditions.  相似文献   

18.
Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. It is linked to significant impacts on biodiversity and disruptions to ecological processes in remnant vegetation. We investigated the richness and abundance of wasps in a highly fragmented urban landscape in Sydney, Australia, comparing assemblages in small urban remnants to edges and interiors of continuous areas of vegetation. We detected no difference in wasp abundance or species richness between remnant types indicating that communities are highly resilient to the effects of urbanization at this scale. However, Chao 2 estimates of predicted species richness indicate that edge sites would support a greater richness and abundance of species compared to small and interior sites. Although families were represented evenly across the sites, interior and edge sites supported more species within families. Wasp composition was significantly affected by the temporal variation and trap location (arboreal or ground), particularly at the family level demonstrating high species turnover and discrimination in vertical space. These sampling effects and temporal inconsistencies highlight the hazards of relying on one-off snapshot surveys and uncorrected datasets for assessments of diversity and responses to urban landscapes. The strong resilience of wasp communities to urbanization when assessed at coarse scales indicates that responses at finer spatial and taxonomic scales are critical to understanding the maintenance of ecosystem function in highly modified landscapes.  相似文献   

19.
The loss of wetlands and semi-natural grasslands throughout much of Europe has led to a historic decline of species associated with these habitats. The reinstatement of these habitats, however, requires spatially explicit predictions of the most suitable sites for restoration, to maximize the ecological benefit per unit effort. One species that demonstrates such declines is the white stork Ciconia ciconia , and the restoration of habitat for this flagship species is likely to benefit a suite of other wetland and grassland biota. Storks are also being reintroduced into southern Sweden and elsewhere, and the a priori identification of suitable sites for reintroduction will greatly improve the success of such programmes. Here a simple predictive habitat-use model was developed, where only a small but reliable presence-only dataset was available. The model is based on the extent and relative soil moisture of semi-natural pastures, the extent of wetlands and the extent of hayfields in southern Sweden. Here the model was used to predict the current extent of stork habitat that is suitable for successful breeding, and the extent of habitat that would become suitable with moderate habitat restoration. The habitat model identifies all 10 occupied nesting sites where breeding is currently successful. It also identifies ∼300 km2 of habitat that is predicted to be suitable stork habitat, but that is presently unused; these sites were identified as potential areas for stork reintroduction. The model also identifies over 100 areas where moderate habitat restoration is predicted to have a disproportionate effect (relative to the restoration effort) on the area of suitable habitat for storks; these sites were identified as priorities for habitat restoration. By identifying areas for reintroduction and restoration, such habitat suitability models have the potential to maximize the effectiveness of such conservation programmes.  相似文献   

20.
South‐west Uganda primarily holds afromontane forests within three protected areas: Mgahinga Gorilla National Park, Echuya Forest Reserve and Bwindi Impenetrable National Park. All forests contain portions of old‐field vegetation. The central question of this study, then, is whether and how natural regeneration of afromontane vegetation would take place. A successional pathway consisting of nine plant communities was found for the first 2 years after cessation of agricultural use. A return of afromontane species despite of an initial dominance of neophytes, a diversification of life form spectra and a growing importance of endozoochory with time belonged to the conspicuous characteristics of this secondary succession. To obtain an insight into the role of birds and buffaloes as possible vectors for seed input, I examined their faeces with regard to germinable seeds. Both, bird faeces, as well as buffalo faeces contained germinable seeds originating from the forest flora. Thus, animal dispersal from the forest into the regenerating zones could be documented. The regeneration potential of the soil‐seed bank seems to be limited in its time scale, and only an initial regeneration capacity could be found. A further progressive succession into a secondary afromontane forest depends on an input of diaspores from undisturbed forest sites. Zoochory appears to be one of the most important dispersal mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号