首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During division of Gram‐negative bacteria, invagination of the cytoplasmic membrane and inward growth of the peptidoglycan (PG) are followed by the cleavage of connective septal PG to allow cell separation. This PG splitting process requires temporal and spatial regulation of cell wall hydrolases. In Escherichia coli, LytM factors play an important role in PG splitting. Here we identify and characterize a member of this family (DipM) in Caulobacter crescentus. Unlike its E. coli counterparts, DipM is essential for viability under fast‐growth conditions. Under slow‐growth conditions, the ΔdipM mutant displays severe defects in cell division and FtsZ constriction. Consistent with its function in division, DipM colocalizes with the FtsZ ring during the cell cycle. Mutagenesis suggests that the LytM domain of DipM is essential for protein function, despite being non‐canonical. DipM also carries two tandems of the PG‐binding LysM domain that are sufficient for FtsZ ring localization. Localization and fluorescence recovery after photobleaching microscopy experiments suggest that DipM localization is mediated, at least in part, by the ability of the LysM tandems to distinguish septal, multilayered PG from non‐septal, monolayered PG.  相似文献   

2.
Cell division in Gram‐negative bacteria involves the co‐ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin‐like protein FtsZ into a Z‐ring at mid‐cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z‐ring constriction, inner‐ and outer‐membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs‐Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid‐cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast‐growth conditions. State‐of‐the‐art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM‐depleted cells compared with wild‐type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.  相似文献   

3.
In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C‐terminal lysostaphin‐like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.  相似文献   

4.
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell‐shape determination. Most LytM‐like proteins that have been structurally and/or biochemically characterized are metallo‐endopeptidases that cleave cross‐links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active‐site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo‐endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.  相似文献   

5.
The physiological function of cell wall amidases has been investigated in several proteobacterial species. In all cases, they have been implicated in the cleavage of cell wall material synthesized by the cytokinetic ring. Although typically non‐essential, this activity is critical for daughter cell separation and outer membrane invagination during division. In Escherichia coli, proteins with LytM domains also participate in cell separation by stimulating amidase activity. Here, we investigated the function of amidases and LytM proteins in the opportunistic pathogen Pseudomonas aeruginosa. In agreement with studies in other organisms, PaAmiB and three LytM proteins were found to play crucial roles in P. aeruginosa cell separation, envelope integrity and antibiotic resistance. Importantly, the phenotype of amidase‐defective P. aeruginosa cells also differed in informative ways from the E. coli paradigm; PaAmiB was found to be essential for viability and the successful completion of cell constriction. Our results thus reveal a key role for amidase activity in cytokinetic ring contraction. Furthermore, we show that the essential function of PaAmiB can be bypassed in mutants activated for a Cpx‐like envelope stress response, suggesting that this signaling system may elicit the repair of division machinery defects in addition to general envelope damage.  相似文献   

6.
Biogenesis of the outer membrane (OM) in Gram‐negative bacteria, which is essential for viability, requires the coordinated transport and assembly of proteins and lipids, including lipopolysaccharides (LPS) and phospholipids (PLs), into the membrane. While pathways for LPS and OM protein assembly are well‐studied, how PLs are transported to and from the OM is not clear. Mechanisms that ensure OM stability and homeostasis are also unknown. The trans‐envelope Tol‐Pal complex, whose physiological role has remained elusive, is important for OM stability. Here, we establish that the Tol‐Pal complex is required for PL transport and OM lipid homeostasis in Escherichia coli. Cells lacking the complex exhibit defects in lipid asymmetry and accumulate excess PLs in the OM. This imbalance in OM lipids is due to defective retrograde PL transport in the absence of a functional Tol‐Pal complex. Thus, cells ensure the assembly of a stable OM by maintaining an excess flux of PLs to the OM only to return the surplus to the inner membrane. Our findings also provide insights into the mechanism by which the Tol‐Pal complex may promote OM invagination during cell division.  相似文献   

7.
Efficient cell division of Gram-negative bacteria requires the presence of the Tol-Pal system to coordinate outer membrane (OM) invagination with inner membrane invagination (IM) and peptidoglycan (PG) remodeling. The Tol-Pal system is a trans-envelope complex that connects the three layers of the cell envelope through an energy-dependent process. It is composed of the three IM proteins, TolA, TolQ and TolR, the periplasmic protein TolB and the OM lipoprotein Pal. The proteins of the Tol-Pal system are dynamically recruited to the cell septum during cell division. TolA, the central hub of the Tol-Pal system, has three domains: a transmembrane helix (TolA1), a long second helical periplasmic domain (TolA2) and a C-terminal globular domain (TolA3). The TolQR complex uses the PMF to energize TolA, allowing its cyclic interaction via TolA3 with the OM TolB-Pal complex. Here, we confirm that TolA2 is sufficient to address TolA to the site of constriction, whereas TolA1 is recruited by TolQ. Analysis of the protein localization as function of the bacterial cell age revealed that TolA and TolQ localize earlier at midcell in the absence of the other Tol-Pal proteins. These data suggest that TolA and TolQ are delayed from their septal recruitment by the multiple interactions of TolA with TolB-Pal in the cell envelope providing a new example of temporal regulation of proteins recruitment at the septum.  相似文献   

8.
Fission of bacterial cells involves the co-ordinated invagination of the envelope layers. Invagination of the cytoplasmic membrane (IM) and peptidoglycan (PG) layer is likely driven by the septal ring organelle. Invagination of the outer membrane (OM) in Gram-negative species is thought to occur passively via its tethering to the underlying PG layer with generally distributed PG-binding OM (lipo)proteins. The Tol-Pal system is energized by proton motive force and is well conserved in Gram-negative bacteria. It consists of five proteins that can connect the OM to both the PG and IM layers via protein-PG and protein-protein interactions. Although the system is needed to maintain full OM integrity, and for class A colicins and filamentous phages to enter cells, its precise role has remained unclear. We show that all five components accumulate at constriction sites in Escherichia coli and that mutants lacking an intact system suffer delayed OM invagination and contain large OM blebs at constriction sites and cell poles. We propose that Tol-Pal constitutes a dynamic subcomplex of the division apparatus in Gram-negative bacteria that consumes energy to establish transient trans-envelope connections at/near the septal ring to draw the OM onto the invaginating PG and IM layers during constriction.  相似文献   

9.
Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram‐negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane, peptidoglycan and outer membrane), biosynthesis of the new poles and eventually, daughter cells separation. The latter requires the coordinated action of the N‐acetylmuramyl‐L‐alanine amidases AmiA/B/C and their LytM activators EnvC and NlpD to cleave the septal peptidoglycan. We present here the 2.5 Å crystal structure of AmiC which includes the first report of an AMIN domain structure, a β‐sandwich of two symmetrical four‐stranded β‐sheets exposing highly conserved motifs on the two outer faces. We show that this N‐terminal domain, involved in the localization of AmiC at the division site, is a new peptidoglycan‐binding domain. The C‐terminal catalytic domain shows an auto‐inhibitory alpha helix obstructing the active site. AmiC lacking this helix exhibits by itself an activity comparable to that of the wild type AmiC activated by NlpD. We also demonstrate the interaction between AmiC and NlpD by microscale thermophoresis and confirm the importance of the active site blocking alpha helix in the regulation of the amidase activity.  相似文献   

10.
Membrane vesicle (MV) release remains undefined, despite its conservation among replicating Gram-negative bacteria both in vitro and in vivo . Proteins identified in Salmonella MVs, derived from the envelope, control MV production via specific defined domains that promote outer membrane protein–peptidoglycan (OM–PG) and OM protein–inner membrane protein (OM–PG–IM) interactions within the envelope structure. Modulation of OM–PG and OM–PG–IM interactions along the cell body and at division septa, respectively, maintains membrane integrity while co-ordinating localized release of MVs with distinct size distribution and protein content. These data support a model of MV biogenesis, wherein bacterial growth and division invoke temporary, localized reductions in the density of OM–PG and OM–PG–IM associations within the envelope structure, thus releasing OM as MVs.  相似文献   

11.
The cell wall is a crucial structural feature in the vast majority of bacteria and comprises a covalently closed network of peptidoglycan (PG) strands. While PG synthesis is important for survival under many conditions, the cell wall is also a dynamic structure, undergoing degradation and remodeling by ‘autolysins’, enzymes that break down PG. Cell division, for example, requires extensive PG remodeling, especially during separation of daughter cells, which depends heavily upon the activity of amidases. However, in Vibrio cholerae, we demonstrate that amidase activity alone is insufficient for daughter cell separation and that lytic transglycosylases RlpA and MltC both contribute to this process. MltC and RlpA both localize to the septum and are functionally redundant under normal laboratory conditions; however, only RlpA can support normal cell separation in low‐salt media. The division‐specific activity of lytic transglycosylases has implications for the local structure of septal PG, suggesting that there may be glycan bridges between daughter cells that cannot be resolved by amidases. We propose that lytic transglycosylases at the septum cleave PG strands that are crosslinked beyond the reach of the highly regulated activity of the amidase and clear PG debris that may block the completion of outer membrane invagination.  相似文献   

12.
During bacterial division, polymers of the tubulin‐like GTPase FtsZ assemble at midcell to form the cytokinetic Z‐ring, which coordinates peptidoglycan (PG) remodeling and envelope constriction. Curvature of FtsZ filaments promotes membrane deformation in vitro, but its role in division in vivo remains undefined. Inside cells, FtsZ directs PG insertion at the division plane, though it is unclear how FtsZ structure and dynamics are mechanistically coupled to PG metabolism. Here we study FzlA, a division protein that stabilizes highly curved FtsZ filaments, as a tool for assessing the contribution of FtsZ filament curvature to constriction. We show that in Caulobacter crescentus, FzlA must bind to FtsZ for division to occur and that FzlA‐mediated FtsZ curvature is correlated with efficient division. We observed that FzlA influences constriction rate, and that this activity is associated with its ability to bind and curve FtsZ polymers. Further, we found that a slowly constricting fzlA mutant strain develops ‘pointy’ poles, suggesting that FzlA influences the relative contributions of radial versus longitudinal PG insertion at the septum. These findings implicate FzlA as a critical coordinator of envelope constriction through its interaction with FtsZ and suggest a functional link between FtsZ curvature and efficient constriction in C. crescentus.  相似文献   

13.
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well‐investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM‐like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in‐depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.  相似文献   

14.
During cytokinesis in Escherichia coli, the peptidoglycan (PG) layer produced by the divisome must be split to promote cell separation. Septal PG splitting is mediated by the amidases: AmiA, AmiB, and AmiC. To efficiently hydrolyze PG, the amidases must be activated by LytM domain factors. EnvC specifically activates AmiA and AmiB, while NlpD specifically activates AmiC. Here, we used an exportable, superfolding variant of green fluorescent protein (GFP) to demonstrate that AmiB, like its paralog AmiC, is recruited to the division site by an N-terminal targeting domain. The results of colocalization experiments indicate that EnvC is recruited to the division site well before its cognate amidase AmiB. Moreover, we show that EnvC and AmiB have differential FtsN requirements for their localization. EnvC accumulates at division sites independently of this essential division protein, whereas AmiB localization is FtsN dependent. Interestingly, we also report that AmiB and EnvC are recruited to division sites independently of one another. The same is also true for AmiC and NlpD. However, unlike EnvC, we find that NlpD shares an FtsN-dependent localization with its cognate amidase. Importantly, when septal PG synthesis is blocked by cephalexin, both EnvC and NlpD are recruited to septal rings, whereas the amidases fail to localize. Our results thus suggest that the order in which cell separation amidases and their activators localize to the septal ring relative to other components serves as a fail-safe mechanism to ensure that septal PG synthesis precedes the expected burst of PG hydrolysis at the division site, accompanied by amidase recruitment.  相似文献   

15.
The peptidoglycan (PG) sacculus, a meshwork of polysaccharide strands cross‐linked by short peptides, protects bacterial cells against osmotic lysis. To enlarge this covalently closed macromolecule, PG hydrolases must break peptide cross‐links in the meshwork to allow insertion of new glycan strands between the existing ones. In the rod‐shaped bacterium Bacillus subtilis, cell wall elongation requires two redundant endopeptidases, CwlO and LytE. However, it is not known how these potentially autolytic enzymes are regulated to prevent lethal breaches in the cell wall. Here, we show that the ATP‐binding cassette transporter‐like FtsEX complex is required for CwlO activity. In Escherichia coli, FtsEX is thought to harness ATP hydrolysis to activate unrelated PG hydrolases during cell division. Consistent with this regulatory scheme, B. subtilis FtsE mutants that are unable to bind or hydrolyse ATP cannot activate CwlO. Finally, we show that in cells depleted of both CwlO and LytE, the PG synthetic machinery continues moving circumferentially until cell lysis, suggesting that cross‐link cleavage is not required for glycan strand polymerization. Overall, our data support a model in which the FtsEX complex is a remarkably flexible regulatory module capable of controlling a diverse set of PG hydrolases during growth and division in different organisms.  相似文献   

16.
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ‐binding protein, promotes Z‐ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled‐coil protein we named ZauP. ZapA and ZauP co‐localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z‐rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z‐ring through a bundling‐independent mechanism. The zauPzapA operon is present in diverse Gram‐negative bacteria, indicating a common mechanism for Z‐ring assembly.  相似文献   

17.
During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC? defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.  相似文献   

18.
The distribution of PBP5, the major D,D‐carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild‐type cells and in mutants lacking one or more D,D‐carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane‐bound form localized to the developing septum and restored wild‐type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.  相似文献   

19.
Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin‐binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of β‐lactams.  相似文献   

20.
Bacteria are surrounded by a complex cell envelope made up of one or two membranes supplemented with a layer of peptidoglycan (PG). The envelope is responsible for the protection of bacteria against lysis in their oft‐unpredictable environments and it contributes to cell integrity, morphology, signaling, nutrient/small‐molecule transport, and, in the case of pathogenic bacteria, host–pathogen interactions and virulence. The cell envelope requires considerable remodeling during cell division in order to produce genetically identical progeny. Several proteinaceous machines are responsible for the homeostasis of the cell envelope and their activities must be kept coordinated in order to ensure the remodeling of the envelope is temporally and spatially regulated correctly during multiple cycles of cell division and growth. This review aims to highlight the complexity of the components of the cell envelope, but focusses specifically on the molecular apparatuses involved in the synthesis of the PG wall, and the degree of cross talk necessary between the cell division and the cell wall remodeling machineries to coordinate PG remodeling during division. The current understanding of many of the proteins discussed here has relied on structural studies, and this review concentrates particularly on this structural work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号