首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation in grasslands is changing at an unprecedented rate. In the Nebraska Sandhills, this shift is attributed in part to encroachment of the woody species Juniperus virginiana. We investigated changes in resource availability and their feedback on seasonal trends in photosynthetic characteristics of J. virginiana trees scattered in open grasslands vs. a dense 57-year-old stand. Dense stand exhibited lower volumetric soil water content, NH4 +, NO3 , and δ13C, as well as foliage δ13C, δ15N, and N content, compared to grasslands. Water potential was higher in trees in grasslands compared to dense stand. J. virginiana in dense stand exhibited similar trends to trees in grasslands for net photosynthetic rate (P N), stomatal conductance, transpiration, maximum photochemical efficiency of PSII, maximum carboxylation velocity, and maximum rate of electron transport. P N peaked early summer and declined in the fall, with trees in open grasslands lagging behind those in dense stand. Plasticity of this species may place it at a competitive advantage in the Sandhills, further altering grasslands vegetation and ecosystem processes.  相似文献   

2.
As a major driving element of the structure and function of arid and semiarid ecosystems, rainfall is the essential factor limiting plant biological processes. To clarify the characteristics of transpiration and responses to summer rainfall, sap flow density (Fd) of Pinus tabulaeformis and Hippophae rhamnoides was monitored using thermal dissipation probes. In addition, midday leaf water potential (ψm) and leaf stomatal conductance (Gs) were also analyzed to determine water use strategies. The results indicated that the diurnal variation in the normalized Fd values exhibited a single‐peak curve for P. tabulaeformis, while H. rhamnoides showed multiple peaks. The normalized Fd for P. tabulaeformis remained relatively stable regardless of rainfall events. However, there was also a significant increase in the normalized Fd for H. rhamnoides in response to rainfall in June and August (< .05), although no significant differences were observed in July. The normalized Fd values for P. tabulaeformis and H. rhamnoides fitted well with the derived variable of transpiration, an integrated index calculated from the vapor pressure deficit and solar radiation (Rs), using an exponential saturation function. The differences in fitting coefficients suggested that H. rhamnoides showed more sensitivity to summer rainfall (< .01) than P. tabulaeformis. Furthermore, during the study period, P. tabulaeformis reduced Gs as soil water decreased, maintaining a relatively constant ψm; while H. rhamnoides allowed large fluctuations in ψm to maintain Gs. Therefore, P. tabulaeformis and H. rhamnoides should be considered isohydric and anisohydric species, respectively. And more consideration should be taken for H. rhamnoides in the afforestation activities and the local plantation management under the context of the frequently seasonal drought in the loess hilly region.  相似文献   

3.
Tropical plants are sensitive to chilling temperatures above zero but it is still unclear whether photosystem I (PSI) or photosystem II (PSII) of tropical plants is mainly affected by chilling temperatures. In this study, the effect of 4°C associated with various light densities on PSII and PSI was studied in the potted seedlings of four tropical evergreen tree species grown in an open field, Khaya ivorensis, Pometia tomentosa, Dalbergia odorifera, and Erythrophleum guineense. After 8 h chilling exposure at the different photosynthetic flux densities of 20, 50, 100, 150 μmol m−2 s−1, the maximum quantum yield of PSII (F v /F m) in all of the four species decreased little, while the quantity of efficient PSI complex (P m) remained stable in all species except E. guineense. However, after chilling exposure under 250 μmol m−2 s−1 for 24 h, F v /F m was severely photoinhibited in all species whereas P m was relative stable in all plants except E. guineense. At the chilling temperature of 4°C, electron transport from PSII to PSI was blocked because of excessive reduction of primary electron acceptor of PSII. F v /F m in these species except E. guineense recovered to ~90% after 8 h recovery in low light, suggesting the dependence of the recovery of PSII on moderate PSI and/or PSII activity. These results suggest that PSII is more sensitive to chilling temperature under the moderate light than PSI in tropical trees, and the photoinhibition of PSII and closure of PSII reaction centers can serve to protect PSI.  相似文献   

4.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

5.
Effects of exogenous glycinebetaine (GB, 2–50 mM) on growth, photosynthetic gas exchange, PSII photochemistry, and the activities of key enzymes involved in CO2 fixation in maize plants were investigated. Growth, CO2 assimilation rate, and stomatal conductance increased at low GB concentrations (2–20 mM) but decreased significantly at high GB concentrations (30–50 mM). Leaf relative water content and water potential remained unchanged at low GB concentrations but decreased at high GB concentrations. The maximal efficiency of PSII photochemistry was unchanged either at low or high GB concentrations. The actual PSII efficiency ( Φ PSII) and photochemical quenching (qP) increased at low GB concentrations but decreased at high GB concentrations. At low GB concentrations, there were no significant changes in the efficiency of excitation energy capture by open PSII reaction centres (Fv′/Fm′) and non‐photochemical quenching (qN). At high GB concentrations, Fv′/Fm′ decreased while qN increased significantly. There were no changes in the activities of phosphoenolpyruvate carboxylase, pyruvate phosphate dikinase, and ribulose‐1,5‐bisphosphate carboxylase in control and GB‐fed plants. However, there was a linear correlation between CO2 assimilation rate and stomatal conductance in control and GB‐fed plants. Moreover, there were no significant differences in O2 evolution rate between control and GB fed‐plants under saturated CO2 conditions. The results suggest that exogenous GB application at certain concentrations can enhance CO2 assimilation rate, which can be explained by an increased stomatal conductance.  相似文献   

6.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

7.
X. Guan  S. Gu 《Photosynthetica》2009,47(3):437-444
In order to investigate the photoprotective function of photorespiration in grapevine under water stress, potted grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were randomly divided into three uniform groups for well-watered [watered every morning to keep the relative water content (RWC) of soil over 70 %], water-stress adapted (drought-adapted at 30 % relative soil water content for 30 days), and water stress without adaptation treatment (water-stressed to 30 % relative soil water content for 3 days). Net assimilation rate (A N), stomatal conductance (g s), substomatal CO2 concentration (C i), transpiration rate (E), actual photochemical efficiency of PSII (ΦPSII), and maximum photochemical efficiency of PSII (Fv/Fm) were recorded by combining measurements of gas exchange and chlorophyll fluorescence. Gross photorespiration (Pr), photosynthetic electron partitioning (JC/JT), photochemical quenching coefficient (qP), and non-photochemical quenching (NPQ) were also calculated. The ratio of net assimilation rate to transpiration rate (A N/E) was used as an indicator of water use efficiency (WUE). A N, apparent Pr, ΦPSII, Fv/Fm, qp, and g s decreased, NPQ increased, and gross Pr sustained at a high level under water stress. This suggests that both photorespiration and energy dissipation play important roles in protecting photosynthetic apparatus against photoinhibition. C i in water-stressed plants without adaptation treatment increased, which indicates the leaves suffered a non-stomatal limitation, while the water-stress adaped plants only suffered a stomatal limitation indicated by low C i.  相似文献   

8.
Seedling performance may determine plant distribution, especially in water-limited environments. Plants of Caragana korshinskii commonly grow in arid and semiarid areas in northwestern China, and endure water shortage in various ways, but little is known about their performance when water shortage occurs at early growth stages. The water relations, photosynthetic activity, chlorophyll (Chl) content and proline accumulation were determined in 1-year-old seedlings growing in a 1:1 mixture of Loess soil and Perlite and subjected to (1) a water deficit for 20 days and (2) kept adequately watered throughout. The water deficit induced low (−6.1 MPa) predawn leaf water potentials (LWP), but did not induce any leaf abscission. Stomatal conductance (g s), leaf transpiration rate (E), and net photosynthetic rate (P N) decreased immediately following the imposition of the water deficit, while the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) and the effective quantum yield of PSII (ΦPSII) decreased 15 days later. An early and rapid decrease in g s, reduced E, increased Chl (a+b) loss, increased the apparent rate of photochemical transport of electrons through PSII (ETR)/P N, as well as a gradual increase in non-photochemical quenching of fluorescence (NPQ) and proline may have contributed to preventing ΦPSII from photodamage. C. korshinskii seedlings used a stress-tolerance strategy, with leaf maintenance providing a clear selective advantage, considering the occasional rainfall events during the growing season.  相似文献   

9.
Castillo  J.M.  Casal  A.E. Rubio  Luque  C.J.  Luque  T.  Figueroa  M.E. 《Photosynthetica》2002,40(1):49-56
Chlorophyll a fluorescence, water potential (s), and root system of Juniperus oxycedrus ssp. macrocarpa, Juniperus phoenicea ssp. turbinata, and Pinus pinea were studied in Mediterranean coastal dunes of SW Spain during summer drought and after fall rains in 1999, the driest year in the 90's. A strong and reversible depression in the photochemical efficiency of photosystem 2 of the three species was recorded, which happened concomitantly with the diurnal increase and decrease in radiation. J. phoenicea, with superficial root system, was the most affected species by summer drought. It showed high rates of down-regulation of photosynthesis by photoinhibition and positive correlation between s and Fv/Fp, with s lower than -7 MPa. However, it tolerated this high stress, showing a fast recovery of its physiological state after fall rains. On the other hand, J. oxycedrus and P. pinea, both with deep root systems, kept their s values up to -3 MPa, showing lower stress during summer drought. On the other hand, J. oxycedrus and J. phoenicea were more sensible to changes in edaphic water content than P. pinea. These specific responses to summer drought would be determined by their root distributions and stomatal control of transpiration, conditioning the efficiency in getting and using the available water resources. Ecophysiological responses indicate that these species are well-adapted to long periods of drought in Mediterranean climate areas, developing different strategies: J. phoenicea tolerates high stress with a fast recovery after fall rains, while J. oxycedrus and P. pinea are less affected by summer drought since their deep root systems would allow them to reach deep water resources.  相似文献   

10.
Transient and steady state responses of leaf gas exchange (photosynthesis (A) and stomatal conductance to water vapor (gs)) to marked changes in photosynthetic photon flux density (PPFD) were studied for two invasive [Cynodon dactylon (L.) Pers. and Sorghum halepense (L.) Pers.] and two non-invasive, native [Bothriochloa ischaemum (L.) Keng and Chrysopogon gryllus (Torn.) Trin.] perennial C4 grass species from semiarid temperate grasslands or croplands. Following an abrupt drop in PPFD from 1300 to 270 μmol photon m−2 s−1, the two invasive species reduced gs to a greater extent than A, resulting in higher intrinsic photosynthetic water use efficiency (PWUE = A/gs) at low, compared to high-light conditions. For non-invasives, a comparable drop in gs and A led to invariant PWUE, which was lower than that for the invasive group under low light. The duration and speed of stomatal closure was similar for the four species. However, unlike the other grasses, the noxious weed S. halepense exhibited a negligible net loss in PWUE during the high-to-low light transition. Responses of the native B. ischaemum were mostly intermediate between those of the two invasive species and the non-invasive C. gryllus, which is in agreement with the species’ ecological intermediacy: non-invasive but often reaches local dominance following a disturbance. With a sudden reverse change in PPFD photosynthetic light induction was not faster for invasives than for non-invasives. These results indicate more efficient water use under variable light for invasive compared to non-invasive perennial C4 grasses which may contribute to their success in semiarid temperate habitats with a heterogeneous light regime. Yet, rapid photosynthetic light induction appears to be of less importance in such environments.  相似文献   

11.
Transient and steady state responses of leaf gas exchange (photosynthesis (A) and stomatal conductance to water vapor (gs)) to marked changes in photosynthetic photon flux density (PPFD) were studied for two invasive [Cynodon dactylon (L.) Pers. and Sorghum halepense (L.) Pers.] and two non-invasive, native [Bothriochloa ischaemum (L.) Keng and Chrysopogon gryllus (Torn.) Trin.] perennial C4 grass species from semiarid temperate grasslands or croplands. Following an abrupt drop in PPFD from 1300 to 270 μmol photon m?2 s?1, the two invasive species reduced gs to a greater extent than A, resulting in higher intrinsic photosynthetic water use efficiency (PWUE = A/gs) at low, compared to high-light conditions. For non-invasives, a comparable drop in gs and A led to invariant PWUE, which was lower than that for the invasive group under low light. The duration and speed of stomatal closure was similar for the four species. However, unlike the other grasses, the noxious weed S. halepense exhibited a negligible net loss in PWUE during the high-to-low light transition. Responses of the native B. ischaemum were mostly intermediate between those of the two invasive species and the non-invasive C. gryllus, which is in agreement with the species’ ecological intermediacy: non-invasive but often reaches local dominance following a disturbance. With a sudden reverse change in PPFD photosynthetic light induction was not faster for invasives than for non-invasives. These results indicate more efficient water use under variable light for invasive compared to non-invasive perennial C4 grasses which may contribute to their success in semiarid temperate habitats with a heterogeneous light regime. Yet, rapid photosynthetic light induction appears to be of less importance in such environments.  相似文献   

12.
Arabidopsis thaliana grown in a light regime that included ultraviolet-B (UV-B) radiation (6 kJ m−2 d−1) had similar light-saturated photosynthetic rates but up to 50% lower stomatal conductance rates, as compared to plants grown without UV-B radiation. Growth responses of Arabidopsis to UV-B radiation included lower leaf area (25%) and biomass (10%) and higher UV-B absorbing compounds (30%) and chlorophyll content (52%). Lower stomatal conductance rates for plants grown with UV-B radiation were, in part, due to lower stomatal density on the adaxial surface. Plants grown with UV-B radiation had more capacity to down regulate photochemical efficiency of photosystem II (PSII) as shown by up to 25% lower φPSII and 30% higher non-photochemical quenching of chlorophyll fluorescence under saturating light. These contributed to a smaller reduction in the maximum photochemical efficiency of PSII (F v/F m), greater dark-recovery of F v/F m, and higher light-saturated carbon assimilation and stomatal conductance and transpiration rates after a four-hour high light treatment for plants grown with UV-B radiation. Plants grown with UV-B were more tolerant to a 12 day drought treatment than plants grown without UV-B as indicated by two times higher photosynthetic rates and 12% higher relative water content. UV-B-grown plants also had three times higher proline content. Higher tolerance to drought stress for Arabidopsis plants grown under UV-B radiation may be attributed to both increased proline content and decreased stomatal conductance. Growth of Arabidopsis in a UV-B-enhanced light regime increased tolerance to high light exposure and drought stress.  相似文献   

13.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

14.
Abstract. Woody plants are increasing in many grassland and savanna ecosystems around the world. As a case in point, the Edwards Plateau of Texas, USA, is a vast region (93 000 km2) in which rapid woody encroachment appears to be occurring. The native vegetation (prior to the Anglo‐European settlement 150–200 yr ago) and the biogeochemical consequences of woody encroachment in this region, however, are poorly understood. To assess these matters we measured plant and soil δ13C, soil organic C and soil N content from grasslands and two important woody patch types (mature Quercus virginiana clusters and Juniperus ashei woodlands) in this region. Soil δ13C values showed that relative productivity of C3 species has increased in grassland and both woody habitats in recent times. δ13C of SOC in grasslands and Q. virginiana clusters increased with depth from the litter layer to 30 cm (grasslands =?21 to ?13‰Q. virginiana clusters =?27 to ?17‰) and were significantly different between habitats at all depths, indicating that Q. virginiana has been a long‐term component of the landscape. In J. ashei woodlands, soil δ13C values (at 20–30 cm depth) near the woodland edge (‐13‰) converged with those of an adjacent grassland (‐13‰) while those from the woodland interior (‐15‰) remained distinct, indicating that the woodland has been present for many years but has recently expanded. Concentrations and densities of SOC and total N were generally greater in woody patches than in grasslands. However, differences in the amount of SOC and N stored beneath the two woody patch types indicates that C and N sequestration potentials are species dependent.  相似文献   

15.
  • Salinity is now an increasingly serious environmental issue that affects the growth and yield of many plants.
  • In the present work, the influence of inoculation with the symbiotic fungus, Piriformospora indica, on gas exchange, water potential, osmolyte content, Na/K ratio and chlorophyll fluorescence of tomato plants under three salinity levels (0, 50, 100 and 150 mm NaCl) and three time periods (5, 10 and 15 days after exposure to salt) was investigated.
  • Results indicate that P. indica inoculation improved growth parameters of tomato under salinity stress. This symbiotic fungus significantly increased photosynthetic pigment content under salinity, and more proline and glycine betaine accumulated in inoculated roots than in non‐inoculated roots. P. indica further significantly improved K+ content and reduced Na+ level under salinity treatment. After inoculation with the endophytic fungus, leaf physiological parameters, such as water potential, net photosynthesis, stomatal conductance and transpiration, were all higher under the salt concentrations and durations compared with controls without P. indica. With increasing salt level and salt treatment duration, values of F0 and qP increased but Fm, Fv/Fm, F′v/F′m and NPQ declined in the controls, while inoculation with P. indica improved these values.
  • The results indicate that the negative effects of NaCl on tomato plants were alleviated after P. indica inoculation, probably by improving physiological parameters such as water status and photosynthesis.
  相似文献   

16.
Seasonal differences in the efficiency of open PSII units (F v/F m), leaf pigment composition and xanthophyll cycle conversion (Z+A)/(V+A+Z), leaf adenylate status, and photosynthetic capacity were investigated in Pinus ponderosa (Ponderosa pine) and Malva neglecta. In P. ponderosa, acclimation to winter involved a lower photosynthetic capacity, higher carotenoid to chlorophyll ratio, persistent reductions in F v/F m corresponding to persistent retention of Z+A, and no change in foliar ATP/ADP ratios. In contrast, M. neglecta characterized in winter exhibited higher rates of photosynthesis than in summer with no change in carotenoid to chlorophyll ratio, while small nocturnally persistent reductions in F v/F m were observed exclusively on colder winter nights when nocturnal retention of Z+A, and high ATP/ADP ratios were also present. Upon removal of winter-stressed leaves or needles from the field to room temperature, a portion of F v/F m relaxed within 15 min of warming and recovery was completed within 5 h in M. neglecta but required 100 h in P. ponderosa. In M. neglecta, the entire recovery of F v/F m correlated with decreases in the foliar ATP/ADP ratio, while in P. ponderosa this ratio remained unchanged. Possible ATP-dependent forms of sustained (Z+A)-dependent energy dissipation are discussed including a nocturnally retained pH gradient on cold winter nights. The slow recovery in pine involved not only retention of Z+A, but apparently also a persistent engagement of Z+A for energy dissipation via an unidentified mechanism. Received: 15 May 1998 / Accepted: 9 November 1998  相似文献   

17.
Conifers growing at high elevations need to optimize their stomatal conductance (gs) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high‐elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site‐ and species‐specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of Ldecidua is >2 times higher, shows a more plastic response to temperature, and down‐regulates gs stronger during atmospheric drought compared to Pabies. These differences allow Ldecidua to exert more efficient water use, adjust to site‐specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of Ldecidua compared to Pabies provide new insights into species‐specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.  相似文献   

18.
An interesting phenomenon is that some light-demanding plants fold their leaves when exposed to high light. Since high light could induce selective photodamage to photosystem II (PSII), we suggest that the leaves fold themselves to diminish the absorption of light energy and remedy the deficiency of physiological photoprotection for PSII. To test this hypothesis, we determined light responses of non-photochemical quenching (NPQ) and cyclic electron flow (CEF) and the effect of high light on PSII activity in Microcos paniculata (non-foldable species) and Bauhinia tenuiflora (foldable species). Under high light B. tenuiflora showed much lower NPQ and CEF than M. paniculata. Meanwhile, the excess light energy that cannot be harmlessly dissipated in B. tenuiflora was more compared with that in M. paniculata. After exposure to a high light of 1,900 μmol photons m−2 s−1 for 2 h, the maximum quantum yield of PSII, as estimated by variable to maximal fluorescence (F v /F m) decreased from 0.7 to 0.52 in the foldable species B. tenuiflora but was stable at 0.7 in the nonfoldable species M. paniculata. These results indicate that the foldable species B. tenuiflora has more sensitivity of PSII to high light stress than the nonfoldable species M. paniculata, partly as a result of less CEF and NPQ in B. tenuiflora. Our results suggest that sun leaves fold themselves under high light to remedy the deficiency of physiological photoprotection for PSII.  相似文献   

19.
A comparison of the effects of a rapid and a slowly imposed water deficit on photosynthesis was performed in Setaria sphacelata var. splendida (Stapf) Clayton, a C4 NADP‐ME grass. Gas exchange was measured in rapidly and slowly dehydrated adult leaves either under atmospheric CO2 partial pressure with an infrared gas analyser or under saturating CO2 partial pressure with a leaf disc oxygen electrode. These measurements were used to calculate stomatal and non‐stomatal limitations to photosynthesis. These were further investigated using modulated chlorophyll a fluorescence measurements and photosynthetic pigment quantification. The decrease of net photosynthesis, leaf conductance and water use efficiency was more pronounced under rapid stress than in slow stress. However, photosynthesis is always mainly limited by stomata in both types of stress, albeit the contribution of non‐stomatal limitations increases at severe water deficits in slow stress experiments. The substomatal CO2 partial pressure significantly increased in both types of stress, suggesting an increased resistance due to an internal barrier to CO2 diffusion. Physical alterations in the structure of the intercellular spaces due to leaf shrinkage may account for these results. The maximal photochemical efficiency of photosystem II (PSII) was remarkably resistant to stress, as the Fv/Fm ratio decreased only at severe water deficit. On the contrary, the effective photochemical efficiency of PSII (ΔF/Fm) measured under high actinic light decreased linearly in both types of stress, although in a more pronounced way under rapid stress. A similar variation in photochemical quenching suggests that the decrease of ΔF/Fm is mainly due to the closure of PSII reaction centres. The non‐photochemical quenching did not change significantly except under severe dehydration indicating that the energization state of thylakoids remained stable under stress. The decrease observed in photosynthetic pigments may be an adaptation to stress rather than a limiting factor to photosynthesis. Results suggests that, although intrinsic mesophyll metabolic inhibitions occur, stomatal limitation to CO2 diffusion is the main reason for the decrease in photosynthesis.  相似文献   

20.
We have studied the effect of grapevine leafroll infection on some features of the thylakoids from field grown grapevine (Vitis vinifera L.) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose‐1,5‐bisphosphate carboxylase (RuBP), nitrate reductase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll (Chl) and carotenoids were reduced in virus‐infected leaves. Similar results were also observed for soluble proteins and RuBP case activity. The in vivo nitrate reductase activity was significantly reduced in infected leaves. Virus infection considerably decreased leaf net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (E) in grapevine leaves. When various photosynthetic activities were followed in isolated thylakoids, virus infection caused marked inhibition of whole chain and photosystem (PS) II activity while the inhibition of PSI activity was only marginal. The artificial exogenous electron donors, diphenyl carbazide and hydroxylamine (NH2OH) significantly restored the loss of PSII activity in infected leaves. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PSII activity in infected leaves could be due to the loss of 47, 43, 33, 28–25, 23 and 17 kDa polypeptides. It is concluded that virus infection inactivates the donor side of PSII. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water‐splitting complex was diminished significantly in infected leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号