首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have shown that differences in the relative abundance of cuticular hydrocarbons occur between reproductives and non-reproductives in many social insects. These differences also exist between Polistes dominulus foundresses and their first emerged daughters (usually indicated as workers), but they gradually disappear when workers from orphaned colonies develop their ovaries and assume a reproductive role in the colony. However, hydrocarbons are not the exclusive components of cuticular layer of wasps. Mass-spectrometry analysis of cuticular methanol extracts from Polistes paper wasps showed a complex pattern of polar substances, partly or totally proteinaceous in nature. We found that these compounds, ranging from 918 to 2679 Da, showed a clear caste differentiation between foundresses and their first emerged daughters (usually indicated as "workers"), both in queen-right and in orphaned colonies. Conversely to hydrocarbons, workers from orphaned colonies maintain a significant difference from foundresses in the pattern of the medium molecular weight (MW) polar compounds obtained by MALDI-TOF. On the basis of such results we hypothesize that a reliable cue to identify foundresses from daughters, and not only their reproductive status, may exist in Polistes wasps. Although the great majority of previous work on social insect communication has focused on cuticular hydrocarbons, our findings suggest that the medium MW component of cuticular substances may be involved in recognition.  相似文献   

2.
A colony of social insects is like a fortress where access is allowed only to colony members. The epicuticular mixture of hydrocarbons has been widely reported to be involved in nestmate recognition in insects. However, recent studies have shown that polar compounds (mainly peptides) are also present, mixed with hydrocarbons, on the cuticle of various insects, including the paper wasps of the genus Polistes. As these polar compounds are variable among Polistes species and are perceived by the wasps, this cuticular fraction could also be involved in nestmate recognition. Through MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time of Flight) mass spectrometry analysis, we assessed, for the first time, the intercolonial variability of the cuticular polar fraction of Polistes dominulus in order to evaluate its reliability as source of nestmate recognition cues. We then tested through behavioral assays the importance of the 2 isolated fractions (apolar and polar) in nestmate recognition by presenting them separately to colonies of P. dominulus. Our results showed that the cuticular polar compounds are not colony specific and they are not used by paper wasps to discriminate nestmates from non-colony members. On the contrary, we confirmed that the isolated cuticular hydrocarbons are the chemical mediators prompting nestmate recognition in paper wasps.  相似文献   

3.
The influence of sociality on the conservation biology of social insects   总被引:6,自引:0,他引:6  
Social insects (ants, bees, wasps and termites) as a group are species rich and ecologically dominant. Many are outstanding "ecological engineers", or providers of "ecosystem services", or potential bioindicator species. Few social insects are currently formally classified as Threatened, but this is almost certainly due to a lack of information on population sizes and trends in scarce species. The main influence that sociality has on threats faced by social insects is in reducing effective population sizes, increasing population genetic subdivision and possibly reducing levels of genetic variation relative to solitary species. The main influence that sociality has on threats from social insects is via its role in the ecological success of invasive species, which frequently pose a major hazard to native biotas. In some cases, social features underpinning ecological success in the original range almost certainly contribute to the success of invasive social insects. However, recent studies show or strongly suggest that, in some of the most notoriously invasive populations of ants, bees and wasps, novel social traits have arisen that greatly enhance the rate of spread and ecological competitiveness of these populations. Sociality can therefore represent either a liability or an asset in its contribution to the persistence of social insect populations.  相似文献   

4.
Social insects use cuticular hydrocarbons (CHCs) as recognition cues in a variety of social contexts, such as species and nestmate recognition. Discrimination of nestmates is an important requisite to avoid exploitation by unrelated individuals. In social wasps, use of CHCs in nestmate recognition has been demonstrated only among adults, whereas very little is known regarding brood recognition. We performed gas chromatography-mass spectrometry analyses of the CHCs of adults and larvae of the social wasp Polistes dominulus and found that larvae possess a characteristic chemical colony-specific pattern distinct from that of adults. Behavioural assays confirmed that these are recognized and discriminated by adults. Larval epicuticular substances are therefore sufficient for recognition of nestmate larvae by adults and demonstrate that wasps are able to discriminate between alien and nestmate larval odours.  相似文献   

5.
Roles of Hydrocarbons in the Recognition Systems of Insects   总被引:8,自引:0,他引:8  
SYNOPSIS. Many bioassays have shown that cuticular hydrocarbonsare used in the recognition systems of both solitary and socialinsects. The function of insect recognition systems is to enablean insect to recognize, and possibly discriminate, its own species,sex, or kin from that of other insects. The primary functionof cuticular hydrocarbons is to protect the insects from desiccation.Hydrocarbons can be removed from insect cuticles and characterizedwith gas chromatography/mass spectrometry. Studies using suchanalytical techniques have revealed that insect hydrocarboncompositions are species-specific, sex-specific and, in socialinsects, colony- and caste-specific. Furthermore, recognitionbioassays have confirmed that certain components of the cuticleof some insect species are sex attractants as well as aphrodisiacsor sex inhibitors. Other bioassays have shown that hydrocarbonsare important in facilitating colony structure in social insects.In addition, the hydrocarbons of some parasitic insects appearto mimic those of their host species. Thus, hydrocarbons areproving to be very important in the everyday activities of manyinsect species.  相似文献   

6.
Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity.  相似文献   

7.
Insects may be unique in having a cuticle with a species-specific chemical profile. In social insects, colony survival depends not only on species-specific but also on colony-specific cuticular compounds with hydrocarbons playing an important role in the communication systems of ants, termites, wasps and bees. We investigated inter- and intraspecific differences in the composition of compounds found on the body surface of seven paleotropical stingless bee species (Apidae: Meliponini) at two different sites in Borneo (Sabah, Malaysia). Besides hydrocarbons, the body surface of all seven stingless bee species comprised terpenoid compounds, a substance class that has not been reported for chemical profiles of any social insect so far. Moreover, the chemical profile of some species differed fundamentally in the composition of terpenoids with one group (e.g. sesquiterpenes) being present in one species, but missing in another. Chemical profiles of different colonies from the same species showed the same hydrocarbon- and terpenoid compounds over different regions, as tested for Tetragonilla collina and Tetragonula melanocephala. However, chemical profiles differed quantitatively between the different colonies especially in T. melanocephala. It is likely that the terpenoids are derived from plant resins because stingless bees are known to collect and use large amounts of resins for nest construction and defence, suggesting an environmental origin of the terpenoids in the chemical profile of paleotropical stingless bees.  相似文献   

8.
Nestmate recognition is one the most important features in social insect colonies. Although epicuticular lipids or cuticular hydrocarbons have both structural and defensive functions in insects, they also seem to be involved in several aspects of communication in wasps, bees and ants. We analyzed and described for the first time the cuticular hydrocarbons of a Neotropical paper wasp, Polistes satan, and found that variation in hydrocarbon profile was sufficiently strong to discriminate individuals according to their colony membership. Therefore, it seems that small differences in the proportion of these compounds can be detected and used as a chemical-based cue by nestmates to detect invaders and avoid usurpation.  相似文献   

9.
Numerous studies have investigated the presence and the effectiveness of volatile pheromones in Lepidoptera. Conversely, very few studies have focused on the composition and the perception of the relatively low volatile components of cuticular mixtures. Yet, cuticular lipids are implied in the recognition processes of several solitary and social insects. In the present study, the cuticular signatures of the satyrid butterflies Lasiommata megera and Lasiommata paramegaera were examined by gas chromatography. General linear model and discriminant analyses on chemical data clearly revealed large differences between sexes, which showed the same diversification pattern in both species. Moreover, a strong diversification between the two species was found, as were differences among populations. These results represent a first step in demonstrating the communicative function of cuticular compounds in the L. megera / paramegaera complex. Moreover, the discrimination among different species and populations on the basis of cuticular mixtures could represent a platform for studying chemotaxonomy and chemical biogeography in butterflies, as already found in several other insect groups.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 703–710.  相似文献   

10.
Sociality is associated with an increased risk of disease transmission and one of the first defense of the insect colonies is represented by antimicrobial secretions. In many eusocial hymenopteran species venom glands represent one of the most important source of antimicrobial substances. It is known that in highly eusocial species the venom is spread on both the cuticle of insects and the comb, thus becoming a component of the so called "social immunity". So far, it is never been ascertained whether this phenomenon is also present in more primitively eusocial and incipiently eusocial groups. Using incipiently eusocial hover wasps as model, we demonstrate that venom is present on insect cuticles and that it strongly acts against microorganisms. By contrast, the nest, regardless of materials, does not represent a 'medium" where the venom is deposited by wasps in order to act as a social antiseptic weapon. Our findings discussed in an evolutionary perspective indicate that a certain degree of sociality or a sufficient number of individuals in an insect society are thresholds to be reached for the rise of complex and efficient forms of collective and social immunity as mechanisms of resistance to diseases.  相似文献   

11.
The cuticular hydrocarbon (CHC) profiles of insects are well known to be variable. This variation may be due to genetic influences, environmental influences, or both. Most prior studies have focused on social insects, mainly those in the Hymenoptera, and have shown that hydrocarbons play an important role mediating social behaviour, particularly via kin recognition. Here, we assess the CHC profiles of three species of parasitoid wasps in the genus Goniozus (Hymenoptera: Bethylidae), some of which are known to attune their behaviour according to both environmentally based and genetically based recognition of kin. We find that CHC profiles vary according to both the genetic background (wasp species) and the developmental environment (host species) of individual parasitoids. This indicates that kin recognition could be based on CHC profiles in these parasitoids, as it is in social Hymenoptera. Because the CHC profiles of species within the genus Goniozus are dissimilar, we also conclude that chemical analysis could be used as a taxonomic tool alongside morphological and molecular genetic identification for Goniozus and other species.  相似文献   

12.
Nest-mate recognition is fundamental for protecting social insect colonies from intrusion threats such as predators or social parasites. The aggression of resident females towards intruders is mediated by their cuticular semiochemicals. A positive relation between the amount of cues and responses has been widely assumed and often taken for granted, even though direct tests have not been carried out. This hypothesis has important consequences, since it is the basis for the chemical insignificance strategy, the most common explanation for the reduction in the amount of semiochemicals occurring in many social parasites. Here we used the social wasp Polistes dominulus, a model species in animal communication studies and host of three social parasites, to test this hypothesis. We discovered that different amounts of cuticular hydrocarbons (CHC) of a foreign female evoke quantitatively different behavioural reactions in the resident foundress. The relation between CHC quantity and the elicited response supports the idea that a threshold exists in the chemical recognition system of this species. The chemical insignificance hypothesis thus holds in a host–parasite system of Polistes wasps, even though other explanations should not be discarded.  相似文献   

13.
One of the most important attributes that allowed the evolution and maintenance of sociality in insects is their ability to distinguish members of their own colonies. The capacity for individual recognition in social insects is mediated by chemical signals that are acquired soon after the adult emerges, and vary according to the tasks performed by individuals in their colonies. We determined the time when adults of the wasp Mischocyttarus consimilis acquire the chemical signature of their colonies, as well as the variation in the cuticular hydrocarbon profiles of the exoskeleton of individuals, according to their functions in the colony. The method used was Fourier transform infrared photoacoustic spectroscopy directly on the gaster of each individual. Young wasps take three to four days to acquire the colony's chemical signature, with a small change on the fifth day, when the cuticular hydrocarbon profile of the workers is more similar to that of the queens than that of the males, probably because they are of the same sex, but primarily because of the similarity of tasks executed by these two groups of females in the colonies.  相似文献   

14.
Associations with symbiotic microorganisms are a major source for evolutionary innovation in eukaryotes. Arthropods have long served as model systems to study such associations, especially since Paul Buchner’s (1965) seminal work that beautifully illustrated the enormous diversity of microorganisms associated with insects. Particularly high taxonomic and functional diversities of microbial symbionts have been found in the guts and gut‐associated organs of insects. These microorganisms play important roles in the digestion, nutrition and defence of the host. However, most studies of gut microorganisms have focused on single host taxa, limiting the ability to draw general conclusions on composition and functional roles of the insect gut microbiota. This is especially true for the diverse and important insect order Hymenoptera that comprises the bees, wasps and ants. Recently, Russell et al. (2009) analysed the bacterial community associated with diverse ant species and found evidence for changes in the microbial gut community coinciding with the evolution of herbivory. In this issue of Molecular Ecology, Martinson et al. (2011) provide the first broad‐scale bacterial survey for bees. Their findings substantiate earlier evidence for a surprisingly simple gut microbiota in honeybees (Apis mellifera) that is composed of only six to ten major phylotypes. Importantly, Martinson et al. demonstrate for the first time that the same bacterial phylotypes are major constituents of other Apis as well as Bombus species, but not of any other bees and wasps outside of the corbiculate bees, a clade of four tribes within the subfamily Apinae. These results indicate that corbiculate bees harbour a specific and possibly co‐evolved bacterial community in their digestive tract. Furthermore, the comparison with other bees and wasps suggests that changes in social lifestyle may have had a stronger effect on the evolution of the gut microbiota than the dietary shift from predatory ancestors to pollen‐feeding (i.e. herbivorous) species. These findings have far‐reaching implications for research on the microbial symbionts of insects as well as on the nutritional physiology of the ecologically and economically important group of corbiculate bees.  相似文献   

15.
Until recently, studies examining the geographical distribution of insects in the Tuscan Archipelago have focused on paleogeography as the primary influence on species distributions. However, for flying insects such as Hymenoptera that may be able to disperse over water, current geographical location is likely to be more important in determining present distributions within the Archipelago. Here we compare mainland and island wasp populations using genetic variation and cuticular hydrocarbon composition of the vespid wasp Polistes dominulus, and species composition of wasps in the family Pompilidae. Both chemical and genetic data result in similar clustering of P. dominulus populations that reflect present geographical location. Moreover, we found current geographical distance to be significantly correlated with P. dominulus population genetic differentiation and Pompilidae faunal composition. These data suggest that dispersal over present sea distances is more important in determining population differentiation and species distribution in the Tuscan Archipelago than paleogeography.  相似文献   

16.
Members of social insect colonies employ a large variety of chemical signals during their life. Of these, cuticular hydrocarbons are of primary importance for social insects since they allow for the recognition of conspecifics, nestmates and even members of different castes. The objectives of this study were (1) to characterize the variation of the chemical profiles among workers of the stingless bee Melipona marginata, and (2) to investigate the dependence of the chemical profiles on the age and on the behavior of the studied individuals. The results showed that cuticular hydrocarbon profiles of workers were composed of alkanes, alkenes and alkadienes that varied quantitatively and qualitatively according to function of workers in the colony.  相似文献   

17.
One of the most studied and best-known mutualistic relationships between insects is that between ants and phloem-feeding insects. Ants feed on honeydew excreted by phloem-feeding insects and, in exchange, attack the phloem feeders'' natural enemies, including parasitic wasps. However, parasitic wasps are under selection to exploit information on hazards and avoid them. Here, we tested whether parasitic wasps detect the previous presence of ants attending colonies of phloem feeders. Behavioural assays demonstrate that wasps left colonies previously attended by ants more frequently than control colonies. This behaviour has a potential cost for the parasitic wasp as females inserted their ovipositor in fewer hosts per colony. In a further bioassay, wasps spent less time on papers impregnated with extracts of the ant cues than on control papers. Gas chromatography coupled with mass spectrometry analyses demonstrated that ants left a blend of cuticular hydrocarbons when they attended colonies of phloem feeders. These cuticular hydrocarbons are deposited passively when ants search for food. Overall, these results suggest, for the first time, that parasitic wasps of honeydew producers detect the previous presence of mutualistic ants through contact infochemicals. We anticipate such interactions to be widespread and to have implications in numerous ecosystems, as phloem feeders are usually tended by ants.  相似文献   

18.
1. Being able to detect a predator before any physical contact is crucial for individual survival. Predator presence can be detected thanks to several types of signal, such as chemical cues. Chemical signals are produced by predators for their protection against desiccation, for their communication, or possibly as a side‐effect of their activity. In insects, chemical communication plays a key role in diverse biological processes, including prey‐predator or plant‐insect interactions, courtship behaviour, and kin or species recognition. 2. Cuticular hydrocarbons (CHCs) are specifically involved in recognition processes and social organisation (division of labour, caste ratios) in social insects. Here, the questions raised are whether termites can detect a predator with their cuticular compounds and whether the predator‐produced compounds can influence their prey. 3. The responses of termites Reticulitermes grassei (Clément, 1978) and Reticulitermes flavipes (Kollar, 1837) to the presence of the cuticular compounds produced by a predator, the ant species Lasius niger (Linnaeus, 1758), were investigated. More specifically, the study quantified termite traits such as caste ratios, mortality rates, CHC profile homogeneity and aggressiveness of workers after 2 months' exposure to predator‐produced compounds. 4. The results show that the predator odour did affect the aggressiveness of the native species R. grassei but not of the invasive R. flavipes. The caste ratios and the mortality rates were not affected for both species. 5. Differences between species are discussed around the native or invasive status of each species, along with the role played by chemical cues on behavioural and chemical adaptations.  相似文献   

19.
The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood‐care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene‐dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood‐care strategy, Coleoptera‐hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity.  相似文献   

20.
The direct hemolytic activities of the venoms from 21 species of stinging insects were determined. The activities spanned 3 1/2 orders of magnitude, ranging from a low of four to a high of 12,000 hemolytic units/mg dry venom, respectively, for the solitary wasp, Dasymutilla lepeletierii, and the social wasp, Polistes infuscatus. The latter activity is the highest reported for any insect venom and represents a level that is potentially harmful to humans stung by the wasp. The social wasps as a group generally possessed highly hemolytic venoms; the ants, poorly hemolytic venoms; and the solitary stinging species, venoms with extremely low activity. For the venoms, hemolytic activity correlated with neither lethal toxicity (LD50) nor algogenicity. This finding suggests that hemolysins alone do not determine venom toxicity, and that the hemolysins of stinging insect venoms serve a variety of poorly understood roles. The range of activity of hemolysins from different venoms indicates they probably have different chemical structures and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号