共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Phytopathogenic bacteria possess a large number of genes that allow them to grow and cause disease on plants. Many of these genes should be induced when the bacteria come in contact with plant tissue. We used a modified in vivo expression technology (IVET) approach to identify genes from the plant pathogen Pseudomonas syringae pv. tomato that are induced upon infection of Arabidopsis thaliana and isolated over 500 in planta-expressed (ipx) promoter fusions. Sequence analysis of 79 fusions revealed several known and potential virulence genes, including hrp/hrc, avr and coronatine biosynthetic genes. In addition, we identified metabolic genes presumably important for adaptation to growth in plant tissue, as well as several genes with unknown function that may encode novel virulence factors. Many ipx fusions, including several corresponding to novel genes, are dependent on HrpL, an alternative RNA polymerase sigma factor that regulates the expression of virulence genes. Expression analysis indicated that several ipx fusions are strongly induced upon inoculation into plant tissue. Disruption of one ipx gene, conserved effector locus (CEL) orf1, encoding a putative lytic murein transglycosylase, resulted in decreased virulence of P. syringae. Our results demonstrate that this screen can be used successfully to isolate genes that are induced in planta, including many novel genes potentially involved in pathogenesis. 相似文献
4.
AvrRpt2, an effector protein from Pseudomonas syringae pv. tomato (Pst), behaves as an avirulence factor that activates resistance in Arabidopsis thaliana lines expressing the resistance gene RPS2. AvrRpt2 can also enhance pathogen fitness by promoting the ability of the bacteria to grow and to cause disease on susceptible lines of A. thaliana that lack functional RPS2. The activation of RPS2 is coupled to the AvrRpt2-induced disappearance of the A. thaliana RIN4 protein. However, the significance of this RIN4 elimination to AvrRpt2 virulence function is unresolved. To clarify our understanding of the contribution of RIN4 disappearance to AvrRpt2 virulence function, we generated new avrRpt2 alleles by random mutagenesis. We show that the ability of six novel AvrRpt2 mutants to induce RIN4 disappearance correlated well with their avirulence activities but not with their virulence activities. Moreover, the virulence activity of wild-type AvrRpt2 was detectable in an A. thaliana line lacking RIN4. Collectively, these results indicate that the virulence activity of AvrRpt2 in A. thaliana is likely to rely on the modification of host susceptibility factors other than, or in addition to, RIN4. 相似文献
5.
6.
Abstract The influence of cysteine and serine in the production of syringomycin by Pseudomonas syringae pv. syringae has been studied. Both amino acids increased toxin synthesis in wild-type strains, although cysteine has a higher stimulatory effect than serine. To corroborate the role of cysteine in the production of syringomycin, a Cys− mutant of P. syringae pv. syringae was isolated by transpositional mutagenesis with Tn5; this Cys− mutant did not produce syringomycin. Nevertheless, and after the addition of high concentrations of cysteine, the cys ∷Tn5 mutant recovered its ability to produce syringomycin. On the other hand, the addition of serine did not return the production of syringomycin to the sys ∷ Tn5 strain: all these data indicated that cysteine modulates the synthesis of syringomycin in P. syringae pv. syringae positively. 相似文献
7.
应用SignalP 3.0 对植物病原细菌Pseudomonas syringae pv. tomato DC3000菌株基因组中的全部5 615个ORFs进行了分析,确定其中679个ORFs所编码蛋白质的N-端有信号肽序列,其中已经命名并有注释的有107个ORFs。信号肽的长度以19 ~31 个氨基酸居多,其中最多的是23 个氨基酸的信号肽。具有信号肽的ORFs编码蛋白的长度大多为101~400 个氨基酸之间。同时,对组成信号肽的氨基酸种类作了系统的分析,发现组成信号肽的氨基酸中非极性氨基酸占48.54%,极性氨基酸占18.67%,带负电荷氨基酸占24.54%,带正电荷氨基酸仅占8.00%,出现最多的3种氨基酸依次为亮氨酸、丙氨酸和丝氨酸,最少的氨基酸是异亮氨酸,在切割位点-1端的氨基酸中83.211%均为丙氨酸,在切割位点后3位的氨基酸中最多的氨基酸也是丙氨酸。通过分析确定628个分泌类信号肽,36个信号肽具有RR-motif的保守区段,15个脂蛋白类信号肽,未发现Prepilin-like 信号肽和Bacteriocin and Pheromone信号肽。 相似文献
8.
Zhao Y Thilmony R Bender CL Schaller A He SY Howe GA 《The Plant journal : for cell and molecular biology》2003,36(4):485-499
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants. 相似文献
9.
A. R. W. Smith 《Journal of Phytopathology》2008,156(6):362-364
Using 1H‐ and 13C‐nuclear magnetic resonance spectroscopy, the repeat unit of the lipopolysaccharide side‐chain from Pseudomonas syringae pv. syringae strain S29 was shown to have the following structure: This structure is identical with that of the side‐chain of Pseudomonas syringae pv. mori CFPB 1656. a 相似文献
10.
Jon Y. Takemoto Yaxin Yu Stephen D. Stock Tokichi Miyakawa 《FEMS microbiology letters》1993,114(3):339-342
Abstract Saccharomyces cerevisiae genes encoding functions necessary for inhibition by the Pseudomonas syringae pv. syringae cyclic lipodepsipeptide, syringomycin-E, were identified by mutant analyses. Syringomycin-E-resistant mutants were isolated, shown to contain single recessive mutations, and divided into eight gene complementation groups. Representative strains from five groups were resistant to nystatin, and deficient in the plasma membrane lipid, ergosterol. All of the mutant strains were resistant to the related cyclic lipodepsipeptides, syringotoxin and syringostatin. The findings show that: 1) at least eight gene-encoded functions participate in the inhibitory response to syringomycin; 2) ergosterol is important for this response; 3) the three related lipodepsipeptides have similar modes of action. 相似文献
11.
Chen Z Kloek AP Cuzick A Moeder W Tang D Innes RW Klessig DF McDowell JM Kunkel BN 《The Plant journal : for cell and molecular biology》2004,37(4):494-504
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae. 相似文献
12.
Saray SantamaríaHernando lvaro LpezMaroto Clara GalvezRoldn Martí MunarPalmer Elizabet MonteagudoCascales JosJuan RodríguezHerva Tino Krell Emilia LpezSolanilla 《Molecular Plant Pathology》2022,23(10):1433
Foliar bacterial pathogens have to penetrate the plant tissue and access the interior of the apoplast in order to initiate the pathogenic phase. The entry process is driven by chemotaxis towards plant‐derived compounds in order to locate plant openings. However, information on plant signals recognized by bacterial chemoreceptors is scarce. Here, we show that the perception of GABA and l‐Pro, two abundant components of the tomato apoplast, through the PsPto‐PscC chemoreceptor drives the entry of Pseudomonas syringae pv. tomato into the tomato apoplast. The recognition of both compounds by PsPto‐PscC caused chemoattraction to both amino acids and participated in the regulation of GABA catabolism. Mutation of the PsPto‐PscC chemoreceptor caused a reduced chemotactic response towards these compounds which in turn impaired entry and reduced virulence in tomato plants. Interestingly, GABA and l‐Pro levels significantly increase in tomato plants upon pathogen infection and are involved in the regulation of the plant defence response. This is an example illustrating how bacteria respond to plant signals produced during the interaction as cues to access the plant apoplast and to ensure efficient infection. 相似文献
13.
14.
K. C. Shenge K. Wydra R. B. Mabagala C. N. Mortensen 《Archives Of Phytopathology And Plant Protection》2013,46(8):572-585
Abstract Fifty-six strains of Pseudomonas syringae pv. tomato (P.s. pv. tomato) were collected from tomato-producing areas in Tanzania and assessed for resistance to copper and antibiotics. The collection was done from three tomato-producing regions (Morogoro, Arusha and Iringa), representing three different ecological conditions in the country. After isolation and identification, the P. s. pv. tomato strains were grown on King's medium B (KB) amended with 20% copper sulphate (w/v). The strains were also assessed for resistance to antibiotics. Results indicated that there was widespread resistance of the P. s. pv. tomato strains to copper sulphate. The highest level of resistance was recorded from the Arusha region (Northern Tanzania), 83.3% of the P. s. pv. tomato strains from that region showed resistance to copper sulphate. This was followed by Iringa region (Southern Tanzania), from where strains of the pathogen were moderately resistant to copper sulphate, such that 54.0% of them were able to grow on the KB medium amended with 20% (w/v) of the copper compound. Out of seven strains of P. s. pv. tomato from Morogoro region (Central Tanzania) included in the study, five (71.5%) were resistant to copper sulphate. The only strain of P. s. pv. tomato from the Dodoma region (Central Tanzania, but with a different ecological condition from the Morogoro region) included in the study was unable to grow on the medium containing 20% copper sulphate. None of the P. s. pv. tomato strains in the four regions included in the study were resistant to streptomycin sulphate. These results suggest that in the Arusha and Iringa regions of Tanzania, there might be possibilities of excessive use of copper compounds in tomato production, such that strains of P. s. pv. tomato strains in the areas have become resistant to the compounds. 相似文献
15.
高必达 《中国生物工程杂志》2000,20(4):55-59
综合评述了近10年来在丁香假单胞菌脂肽毒素生理和分子生物学研究上的发现。这些毒素依肽部AA数目可分两组。丁香假单胞霉素组(syringomycuns)已报告4个成员,肽部有9个AA;丁香假单胞肽毒素组有2个成员,肽部分别有22个和25个AA。肽部C端羧基与分子内羟基氨基酸残基(AA)的羟基酯化闭合成环,再由羟基脂肪酸酰化。两组毒素都诱导植物电解质渗漏、人和动物红血球溶解,其机制在于在细胞膜上形成二价阳离子可通过的寡体通道。对酵母菌的抑制作用受固醇的种类影响,以胆固醇的保护作用最强。丁香假单胞霉素的合成涉及一个多酶系统,有些负责肽合成,有些负责运输或调节,除受内源调节蛋白调节外,也受外源信号分子调节,尤其是受植物酚糖苷诱导。这些毒素具有抗真菌活性,对人和动物的一些病原霉菌有明显效果,在试验剂量无副作用,在医药上应用的前景良好。 相似文献
16.
Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola 总被引:3,自引:0,他引:3
Ham JH Kim MG Lee SY Mackey D 《The Plant journal : for cell and molecular biology》2007,51(4):604-616
Arabidopsis is a non-host for Pseudomonas syringae pv. phaseolicola NPS3121 (Pph), a bacterial pathogen of bean. Pph does not induce a hypersensitive response in Arabidopsis. Here we show that Arabidopsis instead resists Pph with multi-layered basal defense. Our approach was: (i) to identify defense readouts induced by Pph; (ii) to determine whether mutations in known Arabidopsis defense genes disrupt Pph-induced defense signaling; (iii) to determine whether heterologous type III effectors from pathogens of Arabidopsis suppress Pph-induced defense signaling, and (iv) to ascertain how basal defenses contribute to resistance against Pph by individually or multiply disrupting defense signaling pathways with mutations and heterologous type III effectors. We demonstrate that Pph elicits a minimum of three basal defense-signaling pathways in Arabidopsis. These pathways have unique readouts, including PR-1 protein accumulation and morphologically distinct types of callose deposition. Further, they require distinct defense genes, including PMR4, RAR1, SID2, NPR1, and PAD4 . Finally, they are suppressed differentially by heterologous type III effectors, including AvrRpm1 and HopM1. Pph growth is enhanced only when multiple defense pathways are disrupted. For example, mutation of NPR1 or SID2 combined with the action of AvrRpm1 and HopM1 renders Arabidopsis highly susceptible to Pph. Thus, non-host resistance of Arabidopsis to Pph is based on multiple, individually effective layers of basal defense. 相似文献
17.
First Report of Bacterial Leaf Spot of Parsley Caused by Pseudomonas syringae pv. apii in Turkey 下载免费PDF全文
Since March, 2011, typical leaf spot symptoms were observed on parsley in several fields inspected in Hatay and Adana provinces of Turkey. Incidence of the disease was 5–15% in the regions. Symptoms were characterized as angular to irregular, initially water soaked later brown to dark black spots. Spots often limited by veins which were visible from both adaxial and abaxial sides of leaves but were not present on stems. Fluorescent bacterial colonies were consistently isolated from typical leaf spots. Biochemical tests, fatty acid methyl ester (FAME) analysis, molecular, pathogenicity tests and sequence of 16S ribosomal DNA of bacterial isolates were performed to identify possible causal disease agent. The causal disease agent was identified as Pseudomonas syringae pv. apii based on symptoms, biochemical, molecular, pathogenicity tests and sequencing. To our knowledge, this is the first report of bacterial leaf spot on parsley caused by Pseudomonas syringae pv. apii in Turkey. 相似文献
18.
Schreiber K Ckurshumova W Peek J Desveaux D 《The Plant journal : for cell and molecular biology》2008,54(3):522-531
The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants. 相似文献
19.
Bioluminescent strains of the Arabidopsis thaliana pathogens Pseudomonas syringae pathovar (pv.) tomato and pv. maculicola were made by insertion of the luxCDABE operon from Photorhabdus luminescens into the P. syringae chromosome under the control of a constitutive promoter. Stable integration of luxCDABE did not affect bacterial fitness, growth in planta or disease outcome. Luminescence accurately and reliably reported bacterial growth in infected Arabidopsis leaves both with a fixed inoculum followed over time and with varying inocula assayed at a single time point. Furthermore, the bioluminescence assay could detect a small (1.3-fold) difference in bacterial growth between different plant genotypes with a precision comparable to that of the standard plate assay. Luminescence of luxCDABE-tagged P. syringae allows rapid and convenient quantification of bacterial growth without the tissue extraction, serial dilution, plating and manual scoring involved in standard assays of bacterial growth by colony formation in plate culture of samples from infected tissue. The utility of the bioluminescence assay was illustrated by surveying the 500-fold variation in growth of the universally virulent P. syringae pv. maculicola ES4326 among more than 100 Arabidopsis ecotypes and identification of two quantitative trait loci accounting for 48% and 16%, respectively, of the variance of basal resistance to P. syringae pv. tomato DC3000 in the Col-0 x Fl-1 F(2) population. Luminescence assay of bacteria chromosomally tagged with luxCDABE should greatly facilitate the genetic dissection of quantitative differences in gene-for-gene, basal and acquired disease resistance and other aspects of plant interactions with bacterial pathogens requiring high-throughput assays or large-scale quantitative screens. 相似文献