首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presumption that organisms benefit from thermal acclimation has been widely debated in the literature. The ability to thermally acclimate to offset temperature effects on physiological function is prevalent in ectotherms that are unable to thermoregulate year-round to maintain performance. In this study we examined the physiological and behavioural consequences of long-term exposure to different water temperatures in the aquatic snake Acrochordus arafurae. We hypothesised that long dives would benefit this species by reducing the likelihood of avian predation. To achieve longer dives at high temperatures, we predicted that thermal acclimation of A. arafurae would reduce metabolic rate and increase use of aquatic respiration. Acrochordus arafurae were held at 24 or 32°C for 3 months before dive duration and physiological factors were assessed (at both 24 and 32°C). Although filesnakes demonstrated thermal acclimation of metabolic rate, use of aquatic respiration was thermally independent and did not acclimate. Mean dive duration did not differ between the acclimation groups at either temperature; however, warm-acclimated animals increased maximum and modal dive duration, demonstrating a longer dive duration capacity. Our study established that A. arafurae is capable of thermal acclimation and this confers a benefit to the diving abilities of this snake.  相似文献   

2.
Photosynthetic temperature acclimation could strongly affect coupled vegetation–atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (i.e., activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e., photosynthetic capacity measured at 25°C). However, the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve the ability of a spatially explicit canopy carbon flux model, MAESTRA, to predict eddy covariance data from a loblolly pine forest. We show that: (1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes and outperforms acclimation of other single factors (i.e., Ea or ΔS alone); (2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; (3) acclimation of Ea should be restricted to the temperature ranges of the data from which the equations are derived; and (4) model performance is strongly affected by the Hd parameter. We suggest that a renewed effort be made into understanding whether basal photosynthetic capacity, Ea, Hd and ΔS co‐acclimate across broad temperature ranges to determine whether and how multifactor thermal acclimation of photosynthesis occurs.  相似文献   

3.
Seasonal acclimation and thermoregulation represent major components of complex thermal strategies by which ectotherms cope with the heterogeneity of their thermal environment. Some ectotherms possess the acclimatory capacity to shift seasonally their thermoregulatory behavior, but the frequent use of constant acclimation temperatures during experiments and the lack of information about thermal heterogeneity in the field obscures the ecological relevance of this plastic response. We examined the experimentally induced seasonal acclimation of preferred body temperatures (T(p)) in alpine newts Ichthyosaura (formerly Triturus) alpestris subjected to a gradual increase in acclimation temperature from 5°C during the winter to a constant 15°C or diel fluctuations between 10° and 20°C during the spring/summer. Both the mean and range of T(p) followed the increase in mean acclimation temperature without the influence of diel temperature fluctuations. The direction and magnitude of this acclimatory capacity has the potential to increase the time window available for thermoregulation. Although thermoregulation and thermal acclimation are often considered as separate but coadapted adjustments to thermal heterogeneity, their combined response is employed by newts to tackle seasonal variation in a thermoregulatory-challenging aquatic environment.  相似文献   

4.
The symbiotic relationship between corals and photosynthetic algae is the foundation of coral reef ecosystems. This relationship breaks down, leading to coral death, when sea temperature exceeds the thermal tolerance of the coral-algae complex. While acclimation via phenotypic plasticity at the organismal level is an important mechanism for corals to cope with global warming, community-based shifts in response to acclimating capacities may give valuable indications about the future of corals at a regional scale. Reliable regional-scale predictions, however, are hampered by uncertainties on the speed with which coral communities will be able to acclimate. Here we present a trait-based, acclimation dynamics model, which we use in combination with observational data, to provide a first, crude estimate of the speed of coral acclimation at the community level and to investigate the effects of different global warming scenarios on three iconic reef ecosystems of the tropics: Great Barrier Reef, South East Asia, and Caribbean. The model predicts that coral acclimation may confer some level of protection by delaying the decline of some reefs such as the Great Barrier Reef. However, the current rates of acclimation will not be sufficient to rescue corals from global warming. Based on our estimates of coral acclimation capacities, the model results suggest substantial declines in coral abundances in all three regions, ranging from 12% to 55%, depending on the region and on the climate change scenario considered. Our results highlight the importance and urgency of precise assessments and quantitative estimates, for example through laboratory experiments, of the natural acclimation capacity of corals and of the speed with which corals may be able to acclimate to global warming.  相似文献   

5.
Habitats vary in temperature both spatially and temporally. Variation in thermal habitat introduces challenges to organisms and may reduce fitness unless organisms can physiologically adjust to such changes. Theory predicts that thermal variability should influence the capacity for acclimation such that increased variation should favor a reduction in the thermal sensitivity of physiological traits. In this study, we investigated acclimation to constant and variable conditions in populations of the salamander Desmognathus brimleyorum from the Ouachita Mountains of Arkansas, USA. We exposed salamanders to constant and variable temperature regimes for 8 weeks in the laboratory. We then tested salamanders for acclimation of thermal tolerance, and the thermal sensitivities of swimming performance and standard metabolic rate. Our results indicate limited capacity for thermal acclimation to constant and variable conditions in D. brimleyorum. Instead, variation in physiological traits is dominated by differences among populations. Population differences do not appear to be correlated with observed variation in the thermal conditions of the streams, but are likely a consequence of structural and ecological differences. Due to the mixed support for theoretical predictions for acclimation to alternative environments, further consideration should be given to revising and expanding current theoretical models.  相似文献   

6.
Theory predicts that developmental plasticity, the capacity to change phenotypic trajectory during development, should evolve when the environment varies sufficiently among generations, owing to temporal (e.g., seasonal) variation or to migration among environments. We characterized the levels of cellular plasticity during development in populations of Drosophila melanogaster experimentally evolved for over three years in either constant or temporally variable thermal environments. We used two measures of the lipid composition of cell membranes as indices of physiological plasticity (a.k.a. acclimation): (1) change in the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) and (2) change in lipid saturation (number of double bonds) in cool (16°C) relative to warm (25°C) developmental conditions. Flies evolved under variable environments had a greater capacity to acclimate the PE/PC ratio compared to flies evolved in constant environments, supporting the prediction that environments with high among-generation variance favor greater developmental plasticity. Our results are consistent with the selective advantage of a more environmentally sensitive allele that may have associated costs in constant environments.  相似文献   

7.
1. Short-term measures of metabolic responses to warmer environments are expected to indicate the sensitivity of species to regional warming. However, given time, species may be able to acclimate to increasing temperature. Thus, it is useful to determine if short-term responses provide a good predictor for long-term acclimation ability. 2. The tropical reef fish Acanthochromis polyacanthus was used to test whether the ability for developmental thermal acclimation of two populations was indicated by their short-term metabolic response to temperature. 3. While both populations exhibited similar short-term responses of resting metabolic rate (RMR) to temperature, fish from the higher-latitude population were able to fully acclimate RMR, while the lower-latitude population could only partially compensate RMR at the warmest temperature. These differences in acclimation ability are most likely due to genetic differences between the populations rather than differences in thermal regimes. 4. This research indicates that acclimation ability may vary greatly between populations and that understanding such variation will be critical for predicting the impacts of warming environmental temperatures. Moreover, the thermal metabolic reaction norm does not appear to be a good predictor of long-term acclimation ability.  相似文献   

8.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

9.
Ectomycorrhizal (ECM) fungi contribute significantly to ecosystem respiration, but little research has addressed the effect of temperature on ECM fungal respiration. Some plants have the ability to acclimate to temperature such that long‐term exposure to warmer conditions slows respiration at a given measurement temperature and long‐term exposure to cooler conditions increases respiration at a given measurement temperature. We examined acclimation to temperature and temperature sensitivity (Q10) of respiration by ECM fungi by incubating them for a week at one of three temperatures and measuring respiration over a range of temperatures. Among the 12 ECM fungal isolates that were tested, Suillus intermedius, Cenococcum geophilum, and Lactarius cf. pubescens exhibited significant acclimation to temperature, exhibiting an average reduction in respiration of 20–45% when incubated at 23 °C compared with when incubated at 11 or 17 °C. The isolates differed significantly in their Q10 values, which ranged from 1.67 to 2.56. We also found that half of the isolates significantly increased Q10 with an increase in incubator temperature by an average of 15%. We conclude that substantial variation exists among ECM fungal isolates in their ability to acclimate to temperature and in their sensitivity to temperature. As soil temperatures increase, ECM fungi that acclimate may require less carbon from their host plants than fungi that do not acclimate. The ability of some ECM fungi to acclimate may partially ameliorate the anticipated positive feedback between soil respiration and temperature.  相似文献   

10.
The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open‐top chambers supplied three levels of warming (+0, +2, and +4 °C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17° to 34° were observed. Across species, acclimation potentials varied from 0.55 °C to 1.07 °C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.  相似文献   

11.
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.  相似文献   

12.
Boreal forests are crucial in regulating global vegetation‐atmosphere feedbacks, but the impact of climate change on boreal tree carbon fluxes is still unclear. Given the sensitivity of global vegetation models to photosynthetic and respiration parameters, we determined how predictions of net carbon gain (C‐gain) respond to variation in these parameters using a stand‐level model (MAESTRA). We also modelled how thermal acclimation of photosynthetic and respiratory temperature sensitivity alters predicted net C‐gain responses to climate change. We modelled net C‐gain of seven common boreal tree species under eight climate scenarios across a latitudinal gradient to capture a range of seasonal temperature conditions. Physiological parameter values were taken from the literature together with different approaches for thermally acclimating photosynthesis and respiration. At high latitudes, net C‐gain was stimulated up to 400% by elevated temperatures and CO2 in the autumn but suppressed at the lowest latitudes during midsummer under climate scenarios that included warming. Modelled net C‐gain was more sensitive to photosynthetic capacity parameters (Vcmax, Jmax, Arrhenius temperature response parameters, and the ratio of Jmax to Vcmax) than stomatal conductance or respiration parameters. The effect of photosynthetic thermal acclimation depended on the temperatures where it was applied: acclimation reduced net C‐gain by 10%–15% within the temperature range where the equations were derived but decreased net C‐gain by 175% at temperatures outside this range. Thermal acclimation of respiration had small, but positive, impacts on net C‐gain. We show that model simulations are highly sensitive to variation in photosynthetic parameters and highlight the need to better understand the mechanisms and drivers underlying this variability (e.g., whether variability is environmentally and/or biologically driven) for further model improvement.  相似文献   

13.
Global climate change poses one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the combined effects of the mean and variance of temperature on thermal tolerances, organismal survival, and population growth in Drosophila melanogaster. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that responses to thermal variation (±0° or ±5°C) would depend on the mean temperature (17° or 24°C). Consistent with our prediction, thermal variation enhanced the rate of population growth (r(max)) at a low mean temperature but depressed this rate at a high mean temperature. The interactive effect on fitness occurred despite the fact that flies improved their heat and cold tolerances through acclimation to thermal conditions. Flies exposed to a high mean and a high variance of temperature recovered from heat coma faster and survived heat exposure better than did flies that developed at other conditions. Relatively high survival following heat exposure was associated with low survival following cold exposure. Recovery from chill coma was affected primarily by the mean temperature; flies acclimated to a low mean temperature recovered much faster than did flies acclimated to a high mean temperature. To develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean environmental temperature and the variance of environmental temperature.  相似文献   

14.
Acclimation in the thermal tolerance range of insects occurs when they are exposed to novel temperatures in the laboratory. In contrast to the large number of studies that have tested for the ability of insects to acclimate, relatively few have sought to determine the time-course for attainment and reversal of thermal acclimation. In this study the time required for the Mediterranean fruit fly, Ceratitis capitata Wiedemann, and the Natal fruit fly, Ceratitis rosa Karsch, to acclimate to a range of constant temperatures was tested by determining the chill-coma recovery time and heat knock-down time of flies that had been exposed to novel benign temperatures for different durations. The time required for reversal of acclimation for both Ceratitis species was also determined after flies had been returned to the control temperature. Acclimation to 31 °C for only one day significantly improved the heat knock-down time of C. capitata, but also led to slower recovery from chill-coma. Heat knock-down time indicated that acclimation was achieved after only one day in C. rosa, but it took three days for C. rosa to exhibit a significant acclimation response to a novel temperature of 33 °C when measured using chill-coma recovery time. Reversal of acclimation after return to initial temperature conditions was achieved after only one day in both C. capitata and C. rosa. Adult C. capitata held at 31.5 °C initially exhibited improved heat knock-down times but after 9 days the heat knock-down time of these flies had declined to levels not significantly different from that of control flies held at the baseline temperature of 24 °C. In both Ceratitis species, heat knock-down time declined with age whereas chill-coma recovery time increased with age, indicating an increased susceptibility to high and low temperatures, respectively.  相似文献   

15.
Male and female D. oleae have similar powers of acclimation when exposed to low temperatures. Their torpor thresholds depend upon the temperature to which they have been acclimatised. During slow cooling (i.e. less than 1°C per min) they are capable of some rapid acclimation which enables them to lower their torpor threshold by almost 1°C degree, as compared with when they are chilled quickly. After abrupt transfer from 25°C to a different temperature, acclimation takes some time to be accomplished. At 15°C and above it occurs within 10 days but at temperatures below this, progressive acclimation lowers the torpor thresholds to the very low levels typical of flies overwintering under natural conditions. During this long term acclimation torpor thresholds may change by almost 0.5°C per 1°C change of acclimation temperature.No differences were observed in the ability of either flies from northern and southern Greece, or normal and γ-irradiated laboratory reared flies to acclimate to winter conditions in the field. In all cases, torpor thresholds were progressively lowered in advance of the decline in weekly minimum temperatures.  相似文献   

16.
A suite of adaptations allows insects to survive in hostile terrestrial environments for long periods of time. Temperature represents a key environmental factor for most ectothermic insects, and they rapidly acclimate to high and low temperatures. Vast amounts of data in this research field support the idea that an insect's ability to tolerate fluctuating temperatures can be regarded as a biphasic hormetic dose response. Observation indicates that their thermal hormetic response represents a conservative estimate of their intrinsic capacity for rapid adaptation to environmental changes in nature because they naturally experience diel or seasonal temperature fluctuations. It is therefore reasonable to suppose that the hormetic response in insects reflects a surplus physiological capacity to deal with temperature changes that they would experience naturally. Although it has been unknown how thermal acclimation is induced, a stress-dependent increase in N-acetyltyrosine (NAT) was recently found to occur in insect larvae who had endured high temperatures. NAT treatment was demonstrated to induce thermotolerance in several tested insect species. NAT was also identified in the serum of humans as well as mice, and its concentration in mice was shown to be increased by heat and restraint stress, with NAT pretreatment lowering the concentrations of corticosterone and peroxidized lipids in stressed mice. These recent findings may give us some hints about how long a hormetic response lasts. Here, I will discuss recent findings underlying hormetic responses induced by an intrinsic factor, NAT, and how the hormetic response may begin and end.  相似文献   

17.
The strategies used by ectotherms to minimise the detrimental effects of suboptimal thermal environments on physiological performance are often related to whether they inhabit a terrestrial or aquatic environment. Most terrestrial ectotherms use thermoregulatory strategies to maintain body temperature within an optimal range, while many aquatic ectotherms utilise thermal acclimation to maintain performance over varying seasonal temperatures. This study aimed to elucidate the relative contributions of acclimation and behavioural thermoregulation to maintaining whole-animal performance over varying seasonal temperatures in the semi-terrestrial Lamington spiny crayfish (Euastacus sulcatus). Crayfish activity and surface temperatures were determined by means of radio tracking and behavioural observations. Field studies demonstrated that E. sulcatus is exposed to stable daily temperatures, varying only between seasons from 10°C in late winter to over 20°C in summer. Also, terrestrial behaviour corresponded to a small portion of crayfish time (1.13%), much lower than predicted, indicating that E. sulcatus has limited opportunity for behavioural thermoregulation. We also tested the effect of acclimation to either 10 or 20°C on chela strength and stamina. We found acclimation had a more marked effect on chela stamina than maximum strength measures; however, overall acclimatory capacity was limited in E. sulcatus. Thus, we found that the semi-terrestrial crayfish E. sulcatus used neither thermoregulatory behaviours nor physiological strategies to deal with seasonal changes in environmental temperature.  相似文献   

18.
Enhanced soil respiration in response to global warming may substantially increase atmospheric CO2 concentrations above the anthropogenic contribution, depending on the mechanisms underlying the temperature sensitivity of soil respiration. Here, we compared short‐term and seasonal responses of soil respiration to a shifting thermal environment and variable substrate availability via laboratory incubations. To analyze the data from incubations, we implemented a novel process‐based model of soil respiration in a hierarchical Bayesian framework. Our process model combined a Michaelis–Menten‐type equation of substrate availability and microbial biomass with an Arrhenius‐type nonlinear temperature response function. We tested the competing hypotheses that apparent thermal acclimation of soil respiration can be explained by depletion of labile substrates in warmed soils, or that physiological acclimation reduces respiration rates. We demonstrated that short‐term apparent acclimation can be induced by substrate depletion, but that decreasing microbial biomass carbon (MBC) is also important, and lower MBC at warmer temperatures is likely due to decreased carbon‐use efficiency (CUE). Observed seasonal acclimation of soil respiration was associated with higher CUE and lower basal respiration for summer‐ vs. winter‐collected soils. Whether the observed short‐term decrease in CUE or the seasonal acclimation of CUE with increased temperatures dominates the response to long‐term warming will have important consequences for soil organic carbon storage.  相似文献   

19.
To make laboratory studies of thermal resistance in ectotherms more ecologically relevant, temperature changes that reflect conditions experienced by individuals in nature should be used. Here we describe an assay that is useful for quantifying multiple measures of thermal resistance of individual adult flies. We use this approach to assess upper and lower thermal limits and functional thermal scope for Drosophila melanogaster and also show that the method can be used to (1) detect a previously described latitudinal cline for cold tolerance in D. melanogaster populations collected along the east coast of Australia, (2) demonstrate that acclimation at variable temperatures during development increases tolerance to both low and high thermal stresses and therefore increases thermal scope compared to acclimation at a constant temperature, (3) show that temperate populations adapted to variable thermal environments have wider thermal limits compared to those from the less variable tropics, at least when flies were reared under constant temperature conditions and (4) demonstrate that different measures of cold resistance are often not strongly correlated. Based on our findings, we suggest that the method could be routinely used in evaluating thermal responses potentially linked to ecological processes and evolutionary adaptation.  相似文献   

20.
During cold acclimation by higher plants, temperature perception via changes in redox state of Photosystem II (PSII) and subsequent acclimation of the photosynthetic apparatus to cold is very important for achieving freezing tolerance. These properties were studied in two groups (A and B) of the same backcross 3 (BC3) progeny derived from a triploid hybrid of Festuca pratensis (2×) × Lolium multiflorum (4×) backcrossed three times onto diploid L. multiflorum cultivars. Leaves of Group A plants formed at 20°C at medium-low light were unable to acclimate their photosynthetic apparatus to cold. Compared to Group B, the Group A plants were also more frost sensitive. This acclimation ability correlated with the freezing tolerance of the plants. However, leaves of the same Group A plants developed at 20°C, but under higher-light conditions had increased ability to acclimate their photosynthetic apparatus to cold. It was concluded that Group A plants may have impaired PSII temperature perception, and this then resulted in their poor capability to cold acclimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号