首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Repression of competition (RC) within social groups has been suggested as a key mechanism driving the evolution of cooperation, because it aligns the individual’s proximate interest with the interest of the group. Despite its enormous potential for explaining cooperation across all levels of biological organization, ranging from fair meiosis, to policing in insect societies, to sanctions in mutualistic interactions between species, there has been no direct experimental test of whether RC favours the spread of cooperators in a well‐mixed population with cheats. To address this, we carried out an experimental evolution study to test the effect of RC upon a cooperative trait – the production of iron‐scavenging siderophore molecules – in the bacterium Pseudomonas aeruginosa. We found that cooperation was favoured when competition between siderophore producers and nonsiderophore‐producing cheats was repressed, but not in a treatment where competition between the two strains was permitted. We further show that RC altered the cost of cooperation, but did not affect the relatedness among interacting individuals. This confirms that RC per se, as opposed to increased relatedness, has driven the observed increase in bacterial cooperation.  相似文献   

2.
Patterns of conflict and cooperation both within and between societies may be related to the degree of cultural similarity within and between the same societies. A simple model of social learning is used to predict patterns of conflict and cooperation in hypothetical societies that differ in the roles of relatives and nonrelatives in the enculturation of children. The model is illustrated by comparing its predictions to known differences in the patterns of conflict between males inpatrilocal and matrilocal societies.  相似文献   

3.
Cooperation is widespread both within and between species, but are intraspecific and interspecific cooperation fundamentally similar or qualitatively different phenomena? This review evaluates this question, necessary for a general understanding of the evolution of cooperation. First, we outline three advantages of cooperation relative to noncooperation (acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and buffering against variability), and predict when individuals should cooperate with a conspecific versus a heterospecific partner to obtain these advantages. Second, we highlight five axes along which heterospecific and conspecific partners may differ: relatedness and fitness feedbacks, competition and resource use, resource‐generation abilities, relative evolutionary rates, and asymmetric strategy sets and outside options. Along all of these axes, certain asymmetries between partners are more common in, but not exclusive to, cooperation between species, especially complementary resource use and production. We conclude that cooperation within and between species share many fundamental qualities, and that differences between the two systems are explained by the various asymmetries between partners. Consideration of the parallels between intra‐ and interspecific cooperation facilitates application of well‐studied topics in one system to the other, such as direct benefits within species and kin‐selected cooperation between species, generating promising directions for future research.  相似文献   

4.
Models of social conflict in animal societies generally assume that within-group conflict reduces the value of a communal resource. For many animals, however, the primary cost of conflict is increased mortality. We develop a simple inclusive fitness model of social conflict that takes this cost into account. We show that longevity substantially reduces the level of within-group conflict, which can lead to the evolution of peaceful animal societies if relatedness among group members is high. By contrast, peaceful outcomes are never possible in models where the primary cost of social conflict is resource depletion. Incorporating mortality costs into models of social conflict can explain why many animal societies are so remarkably peaceful despite great potential for conflict.  相似文献   

5.
6.
A distinctive feature of human behaviour is the widespread occurrence of cooperation among unrelated individuals. Explaining the maintenance of costly within-group cooperation is a challenge because the incentive to free ride on the efforts of other group members is expected to lead to decay of cooperation. However, the costs of cooperation can be diminished or overcome when there is competition at a higher level of organizational hierarchy. Here we show that competition between groups resolves the paradigmatic 'public goods' social dilemma and increases within-group cooperation and overall productivity. Further, group competition intensifies the moral emotions of anger and guilt associated with violations of the cooperative norm. The results suggest an important role for group conflict in the evolution of human cooperation and moral emotions.  相似文献   

7.
Summary We hypothetized that in the African rainforest (Cameroon), one of the principal limiting factors for termite multiplication is the relative scarcity of nesting sites. As a consequence, termitaries ofCubitermes fungifaber, C. banksi andC. subarquatus with their alveolate structure might constitute good shelters for incipient societies. In the cavities of these termitaries we recorded 29 termite species (including conspecifics) belonging to 23 genera and 5 subfamilies.ActiveCubitermes fungifaber andC. banksi termitaries shelter fewer incipient and adult societies than abandoned ones. ActiveC. subarquatus termitaries shelter more incipient societies than abandoned ones, while the difference is not significant with regards to termite societies at other stages of development.The frequency of shelteredCubitermes spp. incipient societies was so large (72.3%) that we suggest that abandoned termitaries and unoccupied zones of active ones had an adaptative value at the generic level as they constitute good shelters (probably the best) for incipient societies and favour reproduction inCubitermes spp. societies.  相似文献   

8.
The evolution of life is characterized by major evolutionary transitions during which independent units cooperated and formed a new level of selection. Relatedness is a common mechanism that reduces conflict in such cooperative associations. One of the latest transitions is the evolution of social insect colonies. As expected, they are composed of kin and mechanisms have evolved that prevent the intrusion of nonrelatives. Yet, there are exceptions an extreme case is the fusion of unrelated colonies. What are the advantages of fusions that have colonies with a high potential for conflict as a consequence? Here, we investigated fitness costs and benefits of colony fusions in a lower termite species, Cryptotermes secundus, in which more than 25% of all colonies in the field are fused. We found two benefits of colony fusion depending on colony size: very small colonies had an increased probability of survival when they fused, yet for most colony sizes mainly a few workers profit from colony fusions as their chance to become reproductives increased. This individual benefit was often costly for other colony members: colony growth was reduced and the current reproductives had an increased chance of dying when fusions were aggressive. Our study suggests that fusion of colonies often is the result of ‘selfish’ worker interests to become reproductives, and this might have been important for the termites' social evolution. Our results uniquely shows that selfish interests among related colony members can lead to the formation of groups with increased potential for conflict among less related members.  相似文献   

9.
Although interspecific competition has long been recognised as a major driver of trait divergence and adaptive evolution, relatively little effort has focused on how it influences the evolution of intraspecific cooperation. Here we identify the mechanism by which the perceived pressure of interspecific competition influences the transition from intraspecific conflict to cooperation in a facultative cooperatively breeding species, the Asian burying beetle Nicrophorus nepalensis. We not only found that beetles are more cooperative at carcasses when blowfly maggots have begun to digest the tissue, but that this social cooperation appears to be triggered by a single chemical cue – dimethyl disulfide (DMDS) – emitted from carcasses consumed by blowflies, but not from control carcasses lacking blowflies. Our results provide experimental evidence that interspecific competition promotes the transition from intraspecific conflict to cooperation in N. nepalensis via a surprisingly simple social chemical cue that is a reliable indicator of resource competition between species.  相似文献   

10.
If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies.  相似文献   

11.
Explaining the evolution of cooperation among non-relatives is one of the major challenges for evolutionary biology. In this study, we experimentally examined human cooperation in the iterated Snowdrift game (ISD), which has received little attention so far, and compared it with human cooperation in the iterated Prisoner's Dilemma (IPD), which has become the paradigm for the evolution of cooperation. We show that iteration in the ISD leads to consistently higher levels of cooperation than in the IPD. We further demonstrate that the most successful strategies known for the IPD (generous Tit-for-Tat and Pavlov) were also successfully used in the ISD. Interestingly, we found that female players cooperated significantly more often than male players in the IPD but not in the ISD. Moreover, female players in the IPD applied Tit-for-Tat-like or Pavlovian strategies significantly more often than male players, thereby achieving significantly higher pay-offs than male players did. These data demonstrate that the willingness to cooperate does not only depend on the type of the social dilemma, but also on the class of individuals involved. Altogether, our study shows that the ISD can potentially explain high levels of cooperation among non-relatives in humans. In addition, the ISD seems to reflect the social dilemma more realistically than the IPD because individuals obtain immediate direct benefits from the cooperative acts they perform and costs of cooperation are shared between cooperators.  相似文献   

12.
Studies of eusocial invertebrates regard complex societies as those where there is a clear division of labour and extensive cooperation between breeders and helpers. In contrast, studies of social mammals identify complex societies as those where differentiated social relationships influence access to resources and reproductive opportunities. We show here that, while traits associated with social complexity of the first kind occur in social mammals that live in groups composed of close relatives, traits associated with the complexity of social relationships occur where average kinship between female group members is low. These differences in the form of social complexity appear to be associated with variation in brain size and probably reflect contrasts in the extent of conflicts of interest between group members. Our results emphasise the limitations of any unitary concept of social complexity and show that variation in average kinship between group members has far‐reaching consequences for animal societies.  相似文献   

13.
Perspective: repression of competition and the evolution of cooperation   总被引:10,自引:0,他引:10  
Abstract Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study.  相似文献   

14.
15.
《Current biology : CB》2020,30(21):4155-4164.e6
  1. Download : Download high-res image (258KB)
  2. Download : Download full-size image
  相似文献   

16.
Traditional interpretations of the evolution of animal societies have suggested that their structure is a consequence of attempts by individuals to maximize their inclusive fitness within constraints imposed by their social and physical environments. In contrast, some recent re-interpretations have argued that many aspects of social organization should be interpreted as group-level adaptations maintained by selection operating between groups or populations. Here, I review our current understanding of the evolution of mammalian societies, focusing, in particular, on the evolution of reproductive strategies in societies where one dominant female monopolizes reproduction in each group and her offspring are reared by other group members. Recent studies of the life histories of females in these species show that dispersing females often have little chance of establishing new breeding groups and so are likely to maximize their inclusive fitness by helping related dominants to rear their offspring. As in eusocial insects, increasing group size can lead to a progressive divergence in the selection pressures operating on breeders and helpers and to increasing specialization in their behaviour and life histories. As yet, there is little need to invoke group-level adaptations in order to account for the behaviour of individuals or the structure of mammalian groups.  相似文献   

17.
Sex allocation in colonies of eusocial Hymenoptera is one of the best studied social conflicts. We outline a framework for analysing conflict outcome through power and the costs of manipulation and suggest that the conflict will often be unresolved because both major parties of interest, the queen and the workers, should manipulate allocation even at considerable costs to the colony. We suggest future work for analysing power in the conflict between queen and workers over sex allocation and discuss the extent of male power.  相似文献   

18.
Although cooperation is a widespread phenomenon in nature, human cooperation exceeds that of all other species with regard to the scale and range of cooperative activities. Here we review and discuss differences between humans and non-humans in the strategies employed to maintain cooperation and control free-riders. We distinguish forms of cooperative behaviour based on their influence on the immediate payoffs of actor and recipient. If the actor has immediate costs and only the recipient obtains immediate benefits, we term this investment. If the behaviour has immediate positive effects for both actor and recipient, we call this a self-serving mutually beneficial behaviour or mutual cooperation. We argue that humans, in contrast to all other species, employ a wider range of enforcement mechanisms, which allow higher levels of cooperation to evolve and stabilize among unrelated individuals and in large groups. We also discuss proximate mechanisms underlying cooperative behaviour and focus on our experimental work with humans and our closest primate relatives. Differences in the proximate mechanisms also seem to contribute to explaining humans'' greater ability to cooperate and enforce cooperation.  相似文献   

19.
Most social aphids are found within plant galls, inside of which clonally‐derived family groups feed, and specialized larval castes forego reproduction and perform various cooperative tasks, including group defence. When unrelated aphids move between clones, conditions are ripe for conflict because galls and cooperative defence are shared resources that are vulnerable to exploitation. A key unknown is whether conflict is costly in aphid social groups. We show that diversity within groups is negatively correlated with performance in the North American social aphid, Pemphigus obesinymphae. A substantial fraction of productivity is invested into drifting. However, drifting aphids tend to mature and depart non‐natal galls prior to the seasonal peak in fecundity. These results suggest that when unrelated individuals move between groups, social aphids may experience conditions consistent with a tragedy of the commons. These results also emphasize the strongly convergent properties associated with conflict across the spectrum of animal and microbial sociality.  相似文献   

20.
The elongated mounds of the ‘magnetic termite’, Amitermes meridionalis are a prominent feature of the Northern Territory in Australia. They are restricted to habitat patches of seasonally flooded plains which are largely isolated from each other. To investigate the population structure of A. meridionalis, we developed 10 polymorphic microsatellite loci. We tested the variability of the markers on at least 20 individuals from two populations. We found three to 12 alleles per locus with a level of heterozygosity at each locus ranging from 0.05 to 0.74.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号