首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms experience multiple selective agents that can influence phenotypes through heritable and/or plastic changes, often reflecting complex interactions between phenotype and environment. Environmental factors can directly influence phenotypes, but also indirectly affect phenotypic variation when genetic/plastic change in one trait results in correlated genetic/plastic change in another trait. In fishes, body shape is a trait that might be particularly prone to influence from environmental pressures that act on other morphological features. Variation in dissolved oxygen among aquatic environments has a large impact on the size of the gills and brains of fishes. It is likely that dissolved oxygen interacts with other environmental factors to both directly and indirectly influence patterns of body shape variation. We examined effects of dissolved oxygen on body shape variation among populations of an African cichlid fish (Pseudocrenilabrus multicolor) from multiple high- and low-oxygen sites within a single drainage in Uganda. A split-brood laboratory experiment was used to estimate plasticity of gill and brain size, and we used morphometric analyses to identify variation in body shape in F1 offspring. Several analyses enabled us to identify genetic effects among populations, and effects of oxygen acting either directly on body shape or indirectly through its effects on gill and brain size. A large part of the variation in body shape was due to plastic variation in gill size associated with dissolved oxygen. Fish raised under low oxygen had deeper heads and shorter bodies, and this variation was driven by both direct effects of oxygen and indirect effects of gill size variation. Body shape variation in fishes should reflect interacting effects of multiple environmental factors that act directly or indirectly on morphology. Body shape might be particularly difficult to predict when phenotypes are plastic, because changes among populations would occur rapidly and be unrelated to genetic variation.  相似文献   

2.
In many species, temperature‐sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large‐effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool‐ and warm‐temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype‐by‐sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single‐environment values for both traits. We identified a large‐effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller‐effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.  相似文献   

3.
Arnaud Monty  Grégory Mahy 《Oikos》2010,119(10):1563-1570
In introduced organisms, dispersal propensity is expected to increase during range expansion. This prediction is based on the assumption that phenotypic plasticity is low compared to genetic diversity, and an increase in dispersal can be counteracted by the Allee effect. Empirical evidence in support of these hypotheses is however lacking. The present study tested for evidence of differentiation in dispersal‐related traits and the Allee effect in the wind‐dispersed invasive Senecio inaequidens (Asteraceae). We collected capitula from individuals in ten field populations, along an invasion route including the original introduction site in southern France. In addition, we conducted a common garden experiment from field‐collected seeds and obtained capitula from individuals representing the same ten field populations. We analysed phenotypic variation in dispersal traits between field and common garden environments as a function of the distance between populations and the introduction site. Our results revealed low levels of phenotypic differentiation among populations. However, significant clinal variation in dispersal traits was demonstrated in common garden plants representing the invasion route. In field populations, similar trends in dispersal‐related traits and evidence of an Allee effect were not detected. In part, our results supported expectations of increased dispersal capacity with range expansion, and emphasized the contribution of phenotypic plasticity under natural conditions.  相似文献   

4.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   

5.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

6.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

7.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

8.
Although genetic and plastic responses are sometimes considered as unrelated processes, their phenotypic effects may often align because genetic adaptation is expected to mirror phenotypic plasticity if adaptive, but run counter to it when maladaptive. Because the magnitude and direction of this alignment has further consequences for both the tempo and mode of adaptation, they are relevant for predicting an organisms’ reaction to environmental change. To better understand the interplay between phenotypic plasticity and genetic change in mediating adaptive phenotypic variation to climate variability, we here quantified genetic latitudinal variation and thermal plasticity in wing loading and wing shape in two closely related and widespread sepsid flies. Common garden rearing of 16 geographical populations reared across multiple temperatures revealed that wing loading decreases with latitude in both species. This pattern could be driven by selection for increased dispersal capacity in the cold. However, although allometry, sexual dimorphism, thermal plasticity and latitudinal differentiation in wing shape all show similar patterns in the two species, the relationship between the plastic and genetic responses differed between them. Although latitudinal differentiation (south to north) mirrored thermal plasticity (hot to cold) in Sepsis punctum, there was no relationship in Sepsis fulgens. While this suggests that thermal plasticity may have helped to mediate local adaptation in S. punctum, it also demonstrates that genetic wing shape differentiation and its relation to thermal plasticity may be complex and idiosyncratic, even among ecologically similar and closely related species. Hence, genetic responses can, but do not necessarily, align with phenotypic plasticity induced by changing environmental selection pressures.  相似文献   

9.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

10.
Hyma KE  Caicedo AL 《Molecular ecology》2011,20(17):3491-3493
Plasticity allows for changes in phenotype in response to environmental cues, often facilitating local adaptation to seasonal environments. Phenotypic plasticity alone, however, may not always be sufficient to ensure adaptation to new localities. In particular, changing cues associated with shifting seasonal regimes may no longer induce appropriate phenotypic responses in new environments ( Nicotra et al. 2010 ). Plastic responses must thus evolve to avoid being maladaptive. To date, the extent to which plastic responses can change and the genetic mechanisms by which this can happen have remained elusive. In this issue of Molecular Ecology, Blackman et al. (2011a) harness natural variation in flowering time among populations of the wild sunflower, Helianthus annuus, to demonstrate that plasticity has indeed evolved in this species. Remarkably, they are able to detect changes in gene expression that are associated with both a loss of plasticity and a reversal of the plastic response. These changes occur in two separate, but integrated, regulatory pathways controlling the transition to flowering, suggesting that complex regulatory networks that incorporate multiple environmental and developmental cues may facilitate the evolution of plastic responses. This study leverages knowledge from plant genetic models to provide a surprising level of insight into the evolution of an adaptive trait in a non‐model species. Through discoveries of the roles of gene duplication and network modularity in the evolution of plastic responses, the study raises questions about the degree to which species‐specific network architectures may act as a constraint to the potential of adaptation.  相似文献   

11.
Variation in local environments may lead to variation in the selection pressures and differentiation among local populations even at microgeographic scale. We investigated variation in temperature-induced plasticity in larval life-history traits among populations of an isolated pool frog (Rana lessonae) metapopulation in Central Sweden. Successful breeding of this northern fringe metapopulation is highly dependent on early summer temperature, however, the metapopulation shows very little variation in molecular genetic markers suggesting limited potential for local differentiation. We exposed larvae from three closely-located populations to two temperatures (20 and 25°C) in laboratory to investigate their growth and development responses to temperature variation. In general, larvae exposed to warmer temperature experienced higher survival and metamorphosed faster, but at a smaller size than those at low temperature. We found differences among the populations in both trait mean values and in the plastic responses. Among-family variation within populations was found in growth rate and time to metamorphosis, as well as in plasticity suggesting that these traits have a capacity to evolve. Our results indicate ample phenotypic variation within and among these closely-located populations despite the low molecular genetic variation. The differences in pond temperature characteristics detected in the study in the three localities may suggest that differential selection is acting in the populations. The strong differentiation found in the larval traits implies that understanding the factors that influence the potential of the populations to adapt to environmental changes may be essential for successful conservation strategies.  相似文献   

12.
The contribution of phenotypic plasticity to adaptation in Lacerta vivipara   总被引:1,自引:0,他引:1  
Correlation between intraspecific phenotypic variability and variation of environmental conditions could reflect adaptation. Different phenotypes may result from differential expression of a genotype in different environments (phenotypic plasticity) or from expression of different genotypes (genetic diversity). Populations of Lacerta vivipara exhibit larger adult body length, lower age at maturity, higher fecundity, and smaller neonatal size in humid habitats compared to dry habitats. We conducted reciprocal transplants of juvenile L. vivipara to test for the genetic or plastic origin of this variation. We captured gravid females from four populations that differed in the relative humidity of their habitats, and during the last 2 to 4 weeks of gestation, we manipulated heat and water availability under laboratory conditions. Juveniles were released into the different populations and families were divided to compare growth rate and survival of half-sibs in two environments. Growth rate and survival were assessed using capture-recapture techniques. Growth rate was plastic in response to postnatal conditions and did not differ between populations of origin. Survival differed between populations of origin, partially because of differences in neonatal body length. The response of juvenile body length and body condition to selection in the different habitats was affected by the population of origin. This result cannot be simply interpreted in terms of adaptation; however, phenotypic plasticity of fecundity or juvenile size most probably resulted in adaptive reproductive strategies. Adaptation to the habitat by means of genetic specialization was not detected. Further investigation is needed to discriminate between genetic and long-term maternal effects.  相似文献   

13.
Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full‐sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among‐population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low‐flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail.  相似文献   

14.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

15.
Abstract Individuals can adapt to heterogeneity in their environment through either local adaptation or phenotypic plasticity. Colour forms of the ladybird Harmonia axyridis are a classic example of local adaptation, in which the frequency of melanic forms varies greatly between populations. In some populations, there are also large seasonal changes in allele frequency, with melanism being costly in summer and beneficial in winter. We report that the non‐melanic morph of H. axyridis dramatically increases its degree of melanization at cold temperatures. Furthermore, there is genetic variation in reaction norms, with different families responding to temperature in different ways. Variation at different spatial and temporal scales appears to have selected for either genetic or phenotypically plastic adaptations, which may be important in thermoregulation. As melanism is known to have a large effect on fitness in H. axyridis, this plasticity of melanization may have hastened its spread as an invasive species.  相似文献   

16.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

17.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

18.
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator‐induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high‐ and low‐predation environments. We reared full‐siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high‐predation ecotype. However, when reared in the absence of predator cues, guppies from high‐ and low‐predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high‐ versus low‐predation environments. Thus, divergence in plasticity is due to phenotypic differences between high‐ and low‐predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by‐product of adaptation to the derived environment.  相似文献   

19.
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro‐evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade‐off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life‐history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade‐off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, “general‐purpose” genotypes with broad environmental tolerances.  相似文献   

20.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号