首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species pairs of threespine stickleback, Gasterosteus aculeatus, co-exist in several lakes in the Strait of Georgia, southwestern British Columbia. One species, ‘benthics’ is robust-bodied and is morphologically and behaviourally specialized for benthivory. The other species, ‘limnetics’ is specialized for planktivory in open-water habitats of the lakes. We examined mitochondrial DNA restriction site variation in benthic and limnetic sticklebacks as well as in solitary freshwater, anadromous (sea-run), and marine populations to test: (i) if benthic and limnetic pairs have evolved only once or multiple times (parallel evolution) and (ii) if the species have evolved sympatrically, or allopatrically from ‘double invasions’ of lakes by ancestral anadromous/marine sticklebacks. Stickleback mtDNA comprised a single clade with a low (mean = 0.40%) degree of sequence divergence among the 77 haplotypes resolved. Most nucleotide diversity (97%) was found within (rather than among) populations of anadromous/marine sticklebacks whereas most diversity (77%) was found among populations in freshwater sticklebacks. Significant differences in haplotype frequencies were found between benthics and limnetics in three of the four species pair lakes examined, but in all cases the pairs within lakes were characterized by unique assemblages of closely related haplotypes. Hierarchical clustering of divergence estimates suggested that comparable species from different lakes have originated independently in all lakes because in no case did comparable species from different lakes cluster together. Divergent species within lakes tended to be more closely related to one another than to species in other lakes and there were two cases were benthics and limnetics within a particular lake were monophyletic. In two of the four two-species lakes, limnetics were less divergent from putative ancestral anadromous/marine stickleback as predicted by the double invasion hypothesis, but in the two other lakes benthics were less divergent. Our data argue strongly that the species pairs have evolved independently in each lake were they now co-exist. Further, in two lakes our data are consistent with the species having evolved by sympatric divergence, but allopatric divergence followed by introgression of mtDNA that has obscured ancestral relationships cannot be discounted completely. Finally, despite remaining uncertainty about the geography of speciation, the species appear to have evolved in the face of gene flow arguing that natural selection acting on trophic ecology has been a major component of ecological speciation in sticklebacks.  相似文献   

2.
The extent to which convergent adaptation to similar ecological niches occurs by a predictable genetic basis remains a fundamental question in biology. Threespine stickleback fish have undergone an adaptive radiation in which ancestral oceanic populations repeatedly colonized and adapted to freshwater habitats. In multiple lakes in British Columbia, two different freshwater ecotypes have evolved: a deep‐bodied benthic form adapted to forage near the lake substrate, and a narrow‐bodied limnetic form adapted to forage in open water. Here, we use genome‐wide linkage mapping in marine × benthic F2 genetic crosses to test the extent of shared genomic regions underlying benthic adaptation in three benthic populations. We identify at least 100 Quantitative Trait Loci (QTL) harboring genes influencing skeletal morphology. The majority of QTL (57%) are unique to one cross. However, four genomic regions affecting eight craniofacial and armor phenotypes are found in all three benthic populations. We find that QTL are clustered in the genome and overlapping QTL regions are enriched for genomic signatures of natural selection. These findings suggest that benthic adaptation has occurred via both parallel and nonparallel genetic changes.  相似文献   

3.
For over a century, evolutionary biologists have debated whether and how phenotypic plasticity impacts the processes of adaptation and diversification. The empirical tests required to resolve these issues have proven elusive, mainly because it requires documentation of ancestral reaction norms, a difficult prospect where many ancestors are either extinct or have evolved. The threespine stickleback radiation is not limited in this regard, making it an ideal system in which to address general questions regarding the role of plasticity in adaptive evolution. As retreating ice sheets have exposed new habitats, oceanic stickleback founded innumerable freshwater populations, many of which have evolved parallel adaptations to their new environments. Because the founding oceanic population is extant, we can directly evaluate whether specific patterns of ancestral phenotypic expression in the context of novel environments (plasticity), or over ontogeny, predisposed the repeated evolution of "benthic" and "limnetic" ecotypes in shallow and deep lakes, respectively. Consistent with this hypothesis, we found that oceanic stickleback raised in a complex habitat and fed a macroinvertebrate diet expressed traits resembling derived, benthic fish. Alternatively, when reared in a simple environment on a diet of zooplankton, oceanic stickleback developed phenotypes resembling derived, limnetic fish. As fish in both treatments grew, their body depths increased allometrically, as did the size of their mouths, while their eyes became relatively smaller. Allometric trajectories were subtly but significantly impacted by rearing environment. Thus, both environmental and allometric influences on development, along with their interactive effects, produced variation in phenotypes consistent with derived benthic and limnetic fish, which may have predisposed the repeated genetic accommodation of this specific suite of traits. We also found significant shape differences between marine and anadromous stickleback, which has implications for evaluating the ancestral state of stickleback traits.  相似文献   

4.
Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 139–151.  相似文献   

5.
Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher's linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology.  相似文献   

6.
Freshwater colonization by threespine stickleback has led to divergence in morphology between ancestral marine and derived freshwater populations, making them ideal for studying natural selection on phenotypes. In an open brackish–freshwater system, we previously discovered two genetically distinct stickleback populations that also differ in geometric shape: one mainly found in the brackish water lagoon and one throughout the freshwater system. As shape and size are not perfectly correlated, the aim of this study was to identify the morphological trait(s) that separated the populations in geometric shape. We measured 23 phenotypes likely to be important for foraging, swimming capacity, and defense against predation. The lateral plate morphs in freshwater displayed few significant changes in trait sizes, but the low plated expressed feeding traits more associated with benthic habitats. When comparing the completely plated genetically assigned populations, the freshwater, the hybrids, the migrants and the lagoon fish, many of the linear traits had different slopes and intercepts in trait‐size regressions, precluding our ability to directly compare all traits simultaneously, which most likely results from low variation in body length for the lagoon and migrant population. We found the lagoon stickleback population to be more specialized toward the littoral zone, displaying benthic traits such as large, deep bodies with smaller eyes compared to the freshwater completely plated morph. Further, the lagoon and migrant fish had an overall higher body coverage of lateral plates compared to freshwater fish, and the dorsal and pelvic spines were longer. Evolutionary constraints due to allometric scaling relationships could explain the observed, overall restricted, differences in morphology between the sticklebacks in this study, as most traits have diversified in common allometric trajectories. The observed differences in foraging and antipredation traits between the fish with a lagoon and freshwater genetic signature are likely a result of genetic or plastic adaptations toward brackish and freshwater environments.  相似文献   

7.
The ecological theory of adaptive radiation states that differences in ecological circumstances among local populations are the cause of divergence that leads to speciation. The role of parasites in contributing to divergence has seldom been considered, despite their ubiquity and known selective effects. The potential for parasites to contribute to divergence between closely related taxa was examined by quantifying the variation in parasite burdens between sympatric three-spined stickleback species ( Gasterosteus aculeatus complex) in two lakes in coastal British Columbia, Canada. In doing so the relative importance of geographical differences between lakes and trophic or microhabitat differences between species within lakes were evaluated. The entire metazoan parasite burdens of a total of 255 limnetic and benthic sticklebacks in Paxton and Priest lakes were assayed over five time points between spring and autumn. Despite their sympatric distributions, there were large differences in parasite burdens between benthic and limnetic sticklebacks within lakes and these were consistent across both lakes. In particular, limnetics suffered greater burdens of the parasites Schistocephalus solidus and Diplostomum scudderi and benthics had much higher burdens of parasitic glochidia (mollusc larvae). Parasite burdens also differed quantitatively between lakes, but in general such differences were less pronounced than those between the stickleback species. The documented differences in parasite burdens between stickleback species have potential to contribute to divergent selection on life history, immunological and secondary sexual characters that could contribute to reproductive isolation between the species.  相似文献   

8.
Character shifts in the defensive armor of sympatric sticklebacks   总被引:6,自引:0,他引:6  
Natural enemies may contribute to the morphological divergence of sympatric species, yet their role has received little attention to date. We tested for character shifts in defensive armor of sympatric threespine sticklebacks (Gasterosteus aculeatus complex) previously shown to exhibit ecological character displacement in traits related to resource use. We scored five defensive armor traits in sympatric benthic and limnetic stickleback species from southwestern British Columbia and compared them with the same traits in nearby allopatric populations in the presence of the same predatory fish (Oncorhynchus sp.). This approach is analogous to tests of ecological character displacement that compare trophic traits of sympatric and allopatric species in the presence of the same community of resource types. Three patterns consistent with character displacement in defensive armor were found. First, limnetics in different lakes had consistently more armor than sympatric benthics. Second, the average amount of armor, averaged over both species, was reduced in sympatry compared to allopatric populations. This reduction was almost entirely the result of shifts by benthic species, whereas armor in limnetics was more similar to that in allopatric populations. Third, differences between sympatric benthics and limnetics in total armor were greater than expected from comparisons with allopatric populations. We interpret these patterns as the result of differences in habitat-specific predation regimes accompanying ecological character displacement and indirect interactions between sympatric stickleback species mediated by their top predators. These results suggest that predation may facilitate, rather than hinder, the process of divergence in sympatry.  相似文献   

9.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

10.
Many generalist species consist of specialised individuals that use different resources. This within‐population niche variation can stabilise population and community dynamics. Consequently, ecologists wish to identify environmental settings that promote such variation. Theory predicts that environments with greater resource diversity favour ecological diversity among consumers (via disruptive selection or plasticity). Alternatively, niche variation might be a side‐effect of neutral genomic diversity in larger populations. We tested these alternatives in a metapopulation of threespine stickleback. Stickleback consume benthic and limnetic invertebrates, focusing on the former in small lakes, the latter in large lakes. Intermediate‐sized lakes support generalist stickleback populations using an even mixture of the two prey types, and exhibit greater among‐individual variation in diet and morphology. In contrast, genomic diversity increases with lake size. Thus, phenotypic diversity and neutral genetic polymorphism are decoupled: trophic diversity being greatest in intermediate‐sized lakes with high resource diversity, whereas neutral genetic diversity is greatest in the largest lakes.  相似文献   

11.
Predation may be a significant factor in the divergence of sympatric species although its role has been largely overlooked. This study examines the consequences of predation on the fitness of a pair of lacustrine stickleback species (Gasterosteus aculeatus complex) and their F(1) hybrids. Benthic sticklebacks are found in the littoral zone of lakes associated with vegetation and bare sediments, whereas limnetic sticklebacks spend most of their lives in the pelagic zone. The cutthroat trout (Oncorhynchus clarki) is a major predator of sticklebacks and the only other fish species native to lakes containing both benthic and limnetic species. In pond experiments we found that the addition of these predators primarily impacted the survival of limnetics. By contrast, benthic survival was unaffected by trout addition. The result was that relative survival of benthics and limnetics was reversed in the presence of trout. The presence of trout had no effect on the rank order of parent species growth rates, with benthics always growing faster than limnetics. F(1) hybrids survived poorly relative to benthics and limnetics and their growth rates were intermediate regardless of treatment. The results implicate predation by trout in the divergence of the species but not through increased vulnerability of F(1) hybrids.  相似文献   

12.
Intraguild predation is a common ecological interaction that occurs when a species preys upon another species with which it competes. The interaction is potentially a mechanism of divergence between intraguild prey (IG‐prey) populations, but it is unknown if cases of character shifts in IG‐prey are an environmental or evolutionary response. We investigated the genetic basis and inducibility of character shifts in threespine stickleback from lakes with and without prickly sculpin, a benthic intraguild predator (IG‐predator). Wild populations of stickleback sympatric with sculpin repeatedly show greater defensive armor and water column height preference. We laboratory‐raised stickleback from lakes with and without sculpin, as well as marine stickleback, and found that differences between populations in armor, body shape, and behavior persisted in a common garden. Within the common garden, we raised stickleback half‐families from multiple populations in the presence and absence of sculpin. Although the presence of sculpin induced trait changes in the marine stickleback, we did not observe an induced response in the freshwater stickleback. Behavioral and morphological trait differences between freshwater populations thus have a genetic basis and suggest an evolutionary response to intraguild predation.  相似文献   

13.
Synopsis Throughout its range, freshwater populations in the Gasterosteus aculeatus species complex display remarkable differentiation of morphology and behavior, much of which reflects differences in ecological conditions among habitats. We first describe the ecological conditions that have led to morphological and behavioral divergence in two common lake types in British Columbia, Canada. Deep, oligotrophic lakes have favored the evolution of slender fish well adapted for feeding on plankton (limnetic, sensu McPhail 1984), whereas shallow, more eutrophic lakes with extensive littoral zones favor fish that are deeper-bodied and well adapted for feeding on benthic invertebrates. The latter forage in large groups that attack nests guarded by males and cannibalize the young within. Courtship in these lakes is relatively inconspicuous, a feature that apparently enhances nest survivorship. In limnetic populations, this form of cannibalism is usually absent and courtship is conspicuous. Because benthic populations tend to have larger bodies and hence, larger gapes than do limnetic fish we suggest that cannibalism may be facilitated by large body size or a correlated trait. We test this by comparing the morphology of populations exhibiting both group cannibalism and a second kind of cannibalism in which solitary females court males, gain access to nests as a consequence, and then cannibalize eggs without spawning. Our results suggest that differences in body size cannot explain variation among populations in cannibalistic tendencies but that body size may affect the effectiveness of cannibalism by females within populations.  相似文献   

14.
The evolution of threespine sticklebacks in freshwater lakes constitutes a well‐studied example of a phenotypic radiation that has produced numerous instances of parallel evolution, but the exact selective agents that drive these changes are not yet fully understood. We present a comparative study across 74 freshwater populations of threespine stickleback in Norway to test whether evolutionary changes in stickleback morphology are consistent with adaptations to physical parameters such as lake depth, lake area, lake perimeter and shoreline complexity, variables thought to reflect different habitats and feeding niches. Only weak indications of adaptation were found. Instead, populations seem to have diversified in phenotypic directions consistent with allometric scaling relationships. This indicates that evolutionary constraints may have played a role in structuring phenotypic variation across freshwater populations of stickleback. We also tested whether the number of lateral plates evolved in response to lake calcium levels, but found no evidence for this hypothesis.  相似文献   

15.
Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes.  相似文献   

16.
Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance-covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture.  相似文献   

17.
Convergent evolution, in which populations produce similar phenotypes in response to similar selection pressure, is strong evidence for the role of natural selection in shaping biological diversity. In some cases, closely related populations can produce functionally similar but phenotypically divergence forms in response to selection. Functional convergence with morphological divergence has been observed in laboratory selection experiments and computer simulations, but while potentially common, is rarely recognized in nature. Here, we present data from the North Pacific threespine stickleback radiation showing that ecologically and functionally similar, but morphologically divergent phenotypes rapidly evolved when an ancestral population colonized freshwater benthic habitats in parallel. In addition, we show that in this system, functional convergence substantially increases morphospace occupation relative to ancestral phenotypes, which suggests that convergent evolution may, paradoxically, be an important and previously underappreciated source of morphological diversity.  相似文献   

18.
Synopsis Within freshwater fishes, a common pattern of diversification of body form and trophic structure has recently been recognized. Two different suites of co-occurring characters appear to allow fish to efficiently forage on either benthic invertebrates or plankton. For threespine stickleback,Gasterosteus aculeatus, these suites of characters have been labeled benthic and limnetic. The forms differ in several morpholoical traits, with the limnetic having a more fusiform shape, larger eyes, longer and more numerous gill rakers, and a smaller more tubular mouth. Benthic and limnetic threespine stickleback are usually found in allopatry or parapatry, and less frequently in sympatry. Within the range of the threespine stickleback, which comprises perhaps tens of thousands of lacustrine populations, the sympatric occurrence of the benthic and limnetic forms has only been established for six lakes within a small region of the Strait of Georgia, British Columbia. We present the first evidence for the presence of sympatric morphotypes of threespine stickleback outside of British Columbia. We examine the nature and extent of this diversification, and present possible explanations for the sympatric occurrence of these morphotypes. We also explore possible reasons for the small number of documented sympatric benthic and limnetic forms of threespine stickleback despite the existence of thousands of apparently suitable lakes.  相似文献   

19.
Phenotypic plasticity may be favored in generalist populations if it increases niche width, even in temporally constant environments. Phenotypic plasticity can increase the frequency of extreme phenotypes in a population and thus allow it to make use of a wide resource spectrum. Here we test the prediction that generalist populations should be more plastic than specialists. In a common-garden experiment, we show that solitary, generalist populations of threespine sticklebacks inhabiting small coastal lakes of British Columbia have a higher degree of morphological plasticity than the more specialized sympatric limnetic and benthic species. The ancestral marine stickleback showed low levels of plasticity similar to those of sympatric sticklebacks, implying that the greater plasticity of the generalist population has evolved recently. Measurements of wild populations show that those with mean trait values intermediate between the benthic and limnetic values indeed have higher morphological variation. Our data indicate that plasticity can evolve rapidly after colonization of a new environment in response to changing niche use.  相似文献   

20.
Conspecifics inhabiting divergent environments frequently differ in morphology, physiology, and performance, but the interrelationships amongst traits and with Darwinian fitness remains poorly understood. We investigated population differentiation in morphology, metabolic rate, and swimming performance in three‐spined sticklebacks (Gasterosteus aculeatus L.), contrasting a marine/ancestral population with two distinct freshwater morphotypes derived from it: the “typical” low‐plated morph, and a unique “small‐plated” morph. We test the hypothesis that similar to plate loss in other freshwater populations, reduction in lateral plate size also evolved in response to selection. Additionally, we test how morphology, physiology, and performance have evolved in concert as a response to differences in selection between marine and freshwater environments. We raised pure‐bred second‐generation fish originating from three populations and quantified their lateral plate coverage, burst‐ and critical swimming speeds, as well as standard and active metabolic rates. Using a multivariate QSTFST framework, we detected signals of directional selection on metabolic physiology and lateral plate coverage, notably demonstrating that selection is responsible for the reduction in lateral plate coverage in a small‐plated stickleback population. We also uncovered signals of multivariate selection amongst all bivariate trait combinations except the two metrics of swimming performance. Divergence between the freshwater and marine populations exceeded neutral expectation in morphology and in most physiological and performance traits, indicating that adaptation to freshwater habitats has occurred, but through different combinations of traits in different populations. These results highlight both the complex interplay between morphology, physiology and performance in local adaptation, and a framework for their investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号