首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国紫金牛属的分支分类学研究   总被引:2,自引:0,他引:2  
基于60个形态学性状,对中国广义报春花科(Primulaceae s.l.)紫金牛属(Ardisia)90个分类群的系统发育关系运用分支分析方法进行了分析。采用最简约性分析得到了100个同等简约树。50%多数规则一致树的分支结构与以前建立的紫金牛亚属划分系统基本一致。外类群酸藤子属、铁仔属、密花树属聚在分支树的最基部,紫金牛属为一单系类群。形态分支树的一致性指数和保持性指数和各分支内部支持率均较低,只在种与变种或亚种之间获得较高的支持率。高木亚属、腋序亚属、短序亚属、顶序亚属处于分支树较为基部的位置,推测这四个亚属的类群在紫金牛属中较为原始;圆齿亚属和锯齿亚属共同组成一大支,二者亲缘关系紧密,推测这两个亚属为该属中最为进化的类群。结合形态学对属内系统发育关系进行了讨论和推测了一些性状的演化趋势,以期为分类修订提供依据。  相似文献   

2.
Sponges are among the most species‐rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model‐based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single‐copy nuclear protein‐coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax, C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera, C. longissima, C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model‐based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.  相似文献   

3.
4.
5.
Summary. Taxonomic update and geographic distribution of fleas of the genus Ctenophthalmus Kolenati 1856 in the Western Palearctic Region (Insecta: Siphonaptera: Ctenophthalmidae). Among fleas (Siphonaptera), the genus Ctenophthalmus is the one that comprises the largest number of taxa and is also characterized by a large geographical range. Here, we present a taxonomic revision of the Western Paleartic subgenera, groups, species and subspecies. We recognized a total of 143 taxa (57 species and 86 subspecies). These taxa are clustered into 23 groups of species, which fall into seven of the 16 subgenera of the genus Ctenophthalmus. According to Hopkins & Rothschild (1966), the subgenus Ctenophthalmus would only include the agyrtes group, itself divided into subgroups. We decided to raise these subgroups to group status to clarify taxonomic relationships within the subgenus Ctenophthalmus. Within this subgenus, the arvernus group is renamed baeticus, the fransmiti group is confirmed, and the egregius group is created. For each taxon, we provided information on geographical distribution, mammalian hosts, and host specificity.  相似文献   

6.
Setchell & Gardner (1924) provided a taxonomic treatment for the genus Ceramium from lower California and the Gulf of California, Mexico, in which they described several new species, including C. sinicola S. & G. described from Ensenada, BCN and C. interruptum S. & G. described from the vicinity of La Paz, BCS. The latter was later reduced to variety rank in C. sinicolaby Dawson (1950), a taxonomic decision that has subsequently been widely adopted. Phylogenetic analyses inferred from three molecular markers (chloroplast‐encoded rbcL, the RUBISCO spacer, and nuclear encoded SSU rDNA) from recent collections from the Pacific North‐west (California, Oregon) and the Gulf of California reveal a well supported assemblage of three corticated taxa: C. codicolaJ. Ag. 1894, C. sinicola and C. sinicola var. interruptum. Sequence divergence values among the three taxa are sufficient to warrant separate species ranking; hence, we reinstate C. interruptum as a widely distributed epiphyte for the region. C. sinicolais more closely related to C. codicolathan to C. interruptum, with the former two restricted to the host Codium. The molecule‐based relationships are congruent with evolutionary trends in cortication pattern and attachment mode.  相似文献   

7.
8.
9.
Thraustochytrium is the type genus of the family Thraustochytriaceae in the class Labyrinthulomycetes. This genus is characterized by zoospore formation, namely, shape of the cell wall of sporangia and presence or absence of a proliferous body. However, there are several issues associated with the taxonomy of this genus, and these include polyphyletic taxa and overlapping of taxonomic features among species. In particular, the first and second species, T. proliferum and T. globosum, were described based on observations of the morphological features of natural samples in the absence of culture conditions. Before addressing the taxonomic issues associated with this genus, it is important to consider the taxonomic features of each species, i.e., the life history under culture conditions and the phylogenetic position. The objective of the present study was to isolate T. globosum, the second described species in the genus Thraustochytrium, from the type locality. We successfully isolated strain NBRC 112723, which exhibited characteristic features of T. globosum. Under culture conditions, strain NBRC 112723 exhibited taxonomic features observed in other thraustochytrid species. Our molecular phylogeny indicated that this strain isolated from the type locality was located in an unidentified thraustochytrid group; moreover, some strains located in this group exhibited characteristic features of strain NBRC 112723. We clearly distinguished T. globosum based on the taxonomic criteria used to classify the T. proliferum type species. Therefore, we propose the establishment of a new genus, Monorhizochytrium, for the species T. globosum in the family Thraustochytriaceae.  相似文献   

10.
Abstract: The taxonomic origin of the white shark, Carcharodon, is a highly debated subject. New fossil evidence presented in this study suggests that the genus is derived from the broad‐toothed ‘mako’, Carcharodon (Cosmopolitodus) hastalis, and includes the new species C. hubbelli sp. nov. – a taxon that demonstrates a transition between Chastalis and Carcharodon carcharias. Specimens from the Pisco Formation clearly demonstrate an evolutionary mosaic of characters of both recent C. carcharias and fossil C. hastalis. Characters diagnostic to C. carcharias include the presence tooth serrations and a symmetrical first upper anterior tooth that is the largest in the tooth row, while those indicative of C. hastalis include a mesially slanted third anterior (intermediate) tooth. We also provide a recalibration of critical fossil horizons within the Pisco Formation, Peru using zircon U‐Pb dating and strontium‐ratio isotopic analysis. The recalibration of the absolute dates suggests that Carcharodon hubbelli sp. nov. is Late Miocene (6–8 Ma) in age. This research revises and elucidates lamnid shark evolution based on the calibration of the Neogene Pisco Formation.  相似文献   

11.
Antarctic fish of the suborder Notothenioidei represent one of the most notable examples of adaptive radiation in the marine environment. The evolutionary relationships between and within the eight families of this suborder have been well established by numerous studies, whereas the microevolutionary processes of notothenioid species remain largely unexplored. In the present paper we investigated the evolutionary relationships between three closely related species of the genus Chionodraco (family Channichthyidae), namely Chionodraco hamatus, Chionodraco rastrospinosus, and Chionodraco myersi by analysing portions of the mitochondrial genome (D-loop and 16S rRNA). The taxonomic status of C. hamatus and C. rastrospinosus as separate species has been questioned because of the limited number of key morphological characters that distinguish these two taxa. Our results, based on the analysis of several specimens belonging to both morphological groups revealed a small genetic differentiation among haplotypes, however, a clear separation between the two nominal species emerged since all individuals of each of the two taxa clustered together in distinct monophyletic groups. C. myersi appeared more distantly related in the phylogenetic analysis. For one species, C. hamatus, sampling was carried out at three different geographic locations in the area of the Ross Sea and Weddell Sea. The results showed that the partition of the genetic variation within this species is not compatible with the hypothesis of panmixia as gene flow between populations was significantly reduced.  相似文献   

12.
Seven isolates ofTorulomyces from Asian and Australian soil samples were studied in comparison with known taxa of the genus and withMonocillium indicum, the type species ofMonocillium. Three new species,Torulomyces parviverrucosus, T. laevis, andT. ovatus, are described, andT. brunneus is described as a new combination. Conidial characteristics, especially their shape and surface structure, are useful taxonomic criteria for distinguishing species ofTorulomyces. Monocillium is considered to be a distinct genus.  相似文献   

13.
Hybridization and convergent evolution are phenomena of broad interest in evolutionary biology, but their occurrence poses challenges for reconstructing evolutionary affinities among affected taxa. Sticklebacks in the genus Pungitius are a case in point: evolutionary relationships and taxonomic validity of different species and populations in this circumpolarly distributed species complex remain contentious due to convergent evolution of traits regarded as diagnostic in their taxonomy, and possibly also due to frequent hybridization among taxa. To clarify the evolutionary relationships among different Pungitius species and populations globally, as well as to study the prevalence and extent of introgression among recognized species, genomic data sets of both reference genome‐anchored single nucleotide polymorphisms and de novo assembled RAD‐tag loci were constructed with RAD‐seq data. Both data sets yielded topologically identical and well‐supported species trees. Incongruence between nuclear and mitochondrial DNA‐based trees was found and suggested possibly frequent hybridization and mitogenome capture during the evolution of Pungitius sticklebacks. Further analyses revealed evidence for frequent nuclear genetic introgression among Pungitius species, although the estimated proportions of autosomal introgression were low. Apart from providing evidence for frequent hybridization, the results challenge earlier mitochondrial and morphology‐based hypotheses regarding the number of species and their affinities in this genus: at least seven extant species can be recognized on the basis of genetic data. The results also shed new light on the biogeographical history of the Pungitius‐complex, including suggestion of several trans‐Arctic invasions of Europe from the Northern Pacific. The well‐resolved phylogeny should facilitate the utility of this genus as a model system for future comparative evolutionary studies.  相似文献   

14.
The carbon isotope ratios (δ13C values) of samples of Kalanchoë species collected in Africa were compared with previous data obtained with species from Madagascar. In contrast to the Malagasy species which cover the whole range of δ13C values from ?10 to ? 30%o, indicating high inter- and intraspecific diversity of CAM performance, in the African species nearly all δ13C values were less negative than ?18%0. Thus, in the African species the CAM behaviour is characterized by CO2 uptake proceeding mainly during the night. The distribution of δ13C values among the species clearly mirrors the taxonomic groups and the three sections of the genus Kalanchoë sensu lato. The Kitchingia section comprises only groups having CAM with a high proportion of carbon acquisition by the C3-pathway of photosynthesis. The same holds true for the first three groups of the Bryophyllum section, whereas in the following groups of the section CAM with CO2 proceeding mainly during the night is common. The latter CAM mode is typical also for the majority of groups and species in the section Eukalanchoë. The African Kalanchoë species belong to the Eukalanchoë section, whereas in Madagascar all three sections are abundant. The data support the view that the centre of adaptive radiation of the genus is located in Madagascar. They also suggest that high CAM variability is abundant in the more primitive taxa of the genus, whereas the phylogenetically more derived taxa show a stereotype CAM with CO2 uptake taking place only during the night.  相似文献   

15.
Abstract: The fossil record of the callianassid genus Glypturus (Decapoda, Axiidea) is re‐evaluated. Our systematic revision, both of extant and fossil taxa, is based on major cheliped morphology only, thus providing an important impetus for palaeontological studies. Both spination and tuberculation of chelipeds are herein considered of great taxonomic importance. Presence of spines on the upper margins of the merus and propodus and the lower margin of the carpus are significant for generic assignment, whereas the extent of tuberculation on lateral surfaces of the propodus is important for assignment at the species level. Altogether, four extant and six exclusively fossil species of Glypturus are recognized. Several extinct callianassid taxa are now transferred to the genus, namely Callianassa berryi, Callianassa fraasi, Callianassa munieri, Callianassa pugnax and Callianassaspinosa; Callianassa pseudofraasi is considered a junior synonym of C. fraasi. Based on a comparison of ecological preferences of extant representatives, the presence of Glypturus in the fossil record is considered to be linked with tropical to subtropical, nearshore carbonate environments of normal salinity. We argue that Glypturus is of Tethyan origin, with a stratigraphical range going as far back as the Eocene. Since then, the genus migrated both westwards and eastwards, establishing present‐day communities in the western Atlantic and Indo‐West Pacific which both comprise several distinct species. In the presumed area of origin, the genus does no longer occur today. The exlusively fossil (middle Eocene) genus Eoglypturus from Italy is considered closely related to Glypturus and is thus assigned to the subfamily Callichirinae as well.  相似文献   

16.
In small metazoan invertebrates classical taxonomic analyses can be ambiguous due to the limited number of morphological characters available. This difficulty can yield incorrect estimates of species richness or taxa distribution. The Boeckella genus has been described as the dominant taxon of zooplankton assemblages in the Andean biogeographical region. In this genus, taxonomic classification and delimitation of boundaries between species has long been problematic and controversial. Among South American centropagids Boeckella gracilipes has been regarded as one of the most broadly distributed species, its presence having been reported from Ecuador to Tierra del Fuego. However, in the high Andean plateau some centropagid populations identified as Boeckella gracilipes have also been considered as B. gracilipes titicacae or even identified as a different species, namely Boeckella titicacae. In an attempt to resolve the taxonomic status of the Centropagidae family from the high Andean plateau, we combined traditional and multivariate morphological analyses (integral approach) with the molecular phylogenetic approach. The results obtained allow us to conclude that centropagids collected from the high Andean plateau actually represent a different species, B. titicacae, not B. gracilipes. The phylogenetic reconstruction of the South American Centropagidae family indicated that B. gracilipes represents a sister taxon to B. titicacae. The present study stresses the usefulness of integrating alfa-taxonomy with morphometric and molecular approaches in order to resolve species boundaries, to determine geographical distributions and to investigate evolutionary processes.  相似文献   

17.
18.
Present taxonomic studies in Cuphea (Lythraceae) reveal that a broad spectrum of biosystematic data is required for an understanding of evolutionary relationships among this large and complex group of species. As part of these studies pollen data have proven to be of greater pragmatic value than is frequently true for more stenopalynous taxa. A survey is made of pollen types in 160 species of Cuphea with special reference to specific taxonomic problems, and a summary presented of points at which pollen data can profitably contribute to taxonomic revision of the genus.  相似文献   

19.
Ctenogobiops is a genus of Indo-Pacific gobies that form obligate, mutualistic associations with shrimp in the genus Alpheus. This study provides a molecular phylogenetic analysis of eight Ctenogobiops species: C. aurocingulus, C. crocineus, C. feroculus, C. formosa, C. maculosus, C. mitodes, C. tangaroai, and C. tongaensis. We recover two clades within the genus, one consisting of C. feroculus and C. aurocingulus, the second including the remaining species arrayed as follows: (C. tongaensis (C. mitodes (C. formosa (C. maculosus (C. crocineus, C. tangaroai))))). Recovery of C. maculosus and C. crocineus as distinct taxa suggests that these species are not synonymous, although sampling in this study is limited. Species of Ctenogobiops are morphologically very similar to each other, with generally consistent meristic character states present throughout the genus. Recognition of species is based primarily on slight variations in color pattern, shape of the dorsal fin, and size of the gill opening. Comparison of our specimens of C. mitodes with accounts of C. pomastictus confirms that color pattern variations and lateral scale counts are more reliable indicators of species identity than relative dorsal fin spine length, particularly for smaller specimens. We evaluate the distribution of morphological characters in the context of the new phylogenetic hypothesis, and provide a summary of distinguishing characters for Ctenogobiops species. In this case, as in other instances of diverse reef-dwelling fish taxa, molecular data are ideal for inferring phylogenetic relationships, whereas morphological data remain the most expedient way to identify species.  相似文献   

20.
The chromosomes of 22 animals of four subspecies of the genus Ateles (A. paniscus paniscus, A. p. chamek, A. belzebuth hybridus, and A. b. marginatus) were compared using G/C banding and NOR (nucleolar organizer region) staining methods. The cytogenetic data of Ateles in the literature were also used to clarify the phylogenetic relationships of the species and subspecies and to infer the routes of radiation and speciation of these taxa. Chromosomes 6 and 7 that showed more informative geographic variation and the apomorphic form 4/12, exclusively in A. p. paniscus, are the keys for understanding the evolution, radiation, and specification of the Ateles taxa. The ancestral populations of the genus originated in the southwestern Amazon Basin (the occurrence area of A. paniscus chamek) and spread in the Amazon Basin and westward, crossing the Andes and colonizing Central America and northwesternmost regions of South America. The evolutionary history of the northern South American taxa is interpreted using the model of biogeographical evolution postulated by Haffer [Science 185:131–137, 1969]. Ateles paniscus paniscus is the genetically most differentiated form and probably derives from A. belzebuth hybridus. Based on the karyotype differences, the populations of Ateles can be divided into four different group. These findings indicate the necessity of a more coherent taxonomic arrangement for the taxa of Ateles. Am. J. Primatol. 42:167–178, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号