首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
After tail and limb amputation in lizard, injection of 5BrdU for 6 days produces immunolabelled cells in most tissues of tail and limb stumps. After further 8 and 16 days, and 14 and 22 days of regeneration, numerous 5BrdU-labelled cells are detected in regenerating tail and limb, derived from most stump tissues. In tail blastema cone at 14 days, sparse-labelled cells remain in proximal dermis, muscles, cartilaginous tube and external layers of wound epidermis but are numerous in the blastema. In apical regions at 22 days of regeneration, labelled mesenchymal cells are sparse, while the apical wound epidermis contains numerous labelled cells in suprabasal and external layers, indicating cell accumulation from more proximal epidermis. Cell proliferation dilutes the label, and keratinocytes take 8 days to migrate into corneous layers. In healing limbs, labelled cells remain sparse from 14 to 22 days of regeneration in wound epidermis and repairing tissues and little labelling dilution occurs indicating low cell proliferation for local tissue repair but not distal growth. Labelled cells are present in epidermis, intermuscle and peri-nerve connectives, bone periosteum, cartilaginous callus and sparse fibroblasts, leading to the formation of a scarring outgrowth. Resident stem cells and dedifferentiation occur when stump tissues are damaged.  相似文献   

2.
After tail amputation in lizard, a regenerative response is elicited leading to the formation of a new tail. The stimulation of the proliferation process may involve the proto‐oncogene c‐myc. The immunocytochemical analysis detects the c‐myc protein few days after wound in free cells accumulating over the injured tissues of the tail stump. Western blot detects a protein band at 68–70 kDa that is more intense in the regenerating blastema than in normal tail tissues. Nuclei positive for the c‐myc protein are seen in mesenchymal‐like cells located among muscles, connectives and fat tissues of the tail stump 4 days postamputation. Proliferating cells labelled for 5BrdU are seen at 4 days postamputation and are sparse in the mesenchyme of the regenerating blastema formed at 12 days postamputation. Fine immunolocalization of the c‐myc protein shows it is mainly located over euchromatin or poorly condensed chromatin to indicate gene activation. The study correlates the detection of the c‐myc protein with activation of cell division in the injured tissues leading to the formation of the regenerative blastema. The lizard c‐myc protein probably activates a controlled proliferation process through a mechanism that can give information on the uncontrolled process occurring in cancer.  相似文献   

3.
After amputation, the tail of lizards regenerates while the limb forms a short scarring outgrowth. Using phospho‐histone‐H3 immunohistochemistry the mitotic activity of limb tissues at 12–25 days after amputation has been studied, when a limb outgrowth of 0.5–2 mm in length is covered by wound epidermis and the underlying connective is turning into a dense scar. In comparison with a regenerating tail of 3–5 mm in length, the number of dividing cells is reduced of 40–70% in different tissues of the scarring limb 1–2 mm in length at 18 days postamputation. Dividing cells are still present at 12–25 days postamputation in the cartilaginous epiphyses of the transected tibia and fibula and of the untransected femur. Also, the injured muscles present at the base of the scarring outgrowth still contain sparse dividing cells after 25 days postamputation of the limb. Together previous studies, the present observations suggest that after the initial proliferation of fibroblasts deriving from the injured tissues, especially from the dermis and intermuscle connectives during the initial 7–15 days postinjury, these cells cover the injured tissues underneath the wound epidermis, but rapidly produce high levels of collagen turning the initial blastema into a scar.  相似文献   

4.
The keratin cytoskeleton of the wound epidermis of lizard limb (which does not regenerate) and tail (which regenerates) hase been studied by qualitative ultrastructural, immunocytochemical, and immunoblotting methods. The process of re-epithelialization is much shorter in the tail than in the limb. In the latter, a massive tissue destruction of bones, and the shrinkage of the old skin over the stump surface, delay wound closure, maintain inflammation, reduce blastemal cell population, resulting in inhibition of regeneration. The expression of special wound keratins found in the newt epidermis (W6) or mammalian epidermis (K6, K16, and K17) is present in the epidermis of both tail and limb of the lizard. These keratins are not immunolocalized in the migrating epithelium or normal (resting) epidermis but only after it has formed the thick wound epithelium, made of lacunar cells. The latter are proliferating keratinocytes produced during the cyclical renewal or regeneration of lizard epidermis. W6-immunolabeled proteic bands mainly at 45-47 kDa are detected by immunoblotting in normal, regenerating, and scarring epidermis of the tail and limb. Immunolabeled proteic bands at 52, 62-67 kDa (with K6), at 44-47, 60, 65 kDa (with K16), and at 44-47 kDa (with K17) were detected in normal and regenerating epidermis. It is suggested that: (1) these keratins constitute normal epidermis, especially where the lacunar layer is still differentiating; (2) the wound epidermis is similar in the limb and tail in terms of morphology and keratin content; (3) the W6 antigen is similar to that of the newt, and is associated with tonofilaments; (4) lizard K6 and K17 have molecular weights similar to mammalian keratins; (5) K16 shows some isoforms or degradative products with different molecular weight from those of mammals; (6) K17 increases in wound keratinocytes and localizes over sparse filaments or small bundles of short filaments, not over tonofilaments joined to desmosomes; and (7) failure of limb regeneration in lizards may not depend on the wound reaction of keratinocytes.  相似文献   

5.
The immunolocalization of the muscle segmental homoeobox protein Msx1‐2 of 27–34 kDa in the regenerating tail blastema of a lizard shows prevalent localization in the apical ependyma of the regenerating spinal cord and less intense labelling in the wound epidermis, in the apical epidermal peg (AEP), and in the regenerating segmental muscles. The AEP is a micro‐region of the regenerating epidermis located at the tail tip of the blastema, likely corresponding to the AEC of the amphibian blastema. No immunolabelling is present in the wound epidermis and scarring blastema of the limb at 18–21 days of regeneration, except for sparse repairing muscles. The presence of a proximal–distal gradient of Msx1‐2 protein, generated from the apical ependyma, is suggested by the intensity of immunolabelling. The AEP and the ependyma are believed to induce and maintain tail regeneration, and this study suggests that Msx1‐2 proteins are components of the signalling system that maintains active growth of the tail blastema. The lack of activation and production of Msx1‐2 protein in the limb are likely due to the intense inflammatory reaction following amputation. This study confirms that, like during regeneration in fishes and amphibians, also the blastema of lizards utilizes common signalling pathways for maintaining regeneration.  相似文献   

6.
The ability of lizards to withstand infections after wounding or amputation of the tail or limbs has suggested the presence of antimicrobial peptides in their tissues. Previous studies on the lizard Anolis carolinensis have identified several beta‐defensin‐like peptides that may potentially be involved in protection from infections. The present ultrastructural immunocytochemical study has analyzed tissues in different reptilian species in order to localize the cellular source of one of the more expressed beta‐defensins previously sequenced in lizard indicated as AcBD15. Beta‐defensin‐like immunoreactivity is present in some of the larger, nonspecific granules of granulocytes in two lizard species, a snake, the tuatara, and a turtle. The ultrastructural study indicates that only heterophilic and basophilic granulocytes contain this defensin while other cell types from the epidermis, mesenchyme, and dermis, muscles, nerves, cartilage or bone are immunonegative. The study further indicates that not all granules in reptilian granulocytes contain the beta‐defensin peptide, suggesting the presence of granules with different content as previously indicated for mammalian neutrophilic leucocytes. No immunolabeling was instead observed in granulocytes of the alligator and chick using this antibody. The present immunocytochemical observations suggest a broad cross‐reactivity and conservation of beta‐defensin‐like sequence or steric motif across lepidosaurians and likely in turtles while archosaurian granulocytes may contain different beta‐defensin‐like or other peptides. J. Morphol. 274:877–886, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The formation of constriction bands after amputation of the tail has been studied in embryos of the Common lizard ( Lacerta vivipara ) after the eggs have been removed from the mother and placed in culture. The constrictions are formed from the amnion and the inner wall of the allantois; they usually develop within two days after operation. They compress the tail stump and cause necrosis and detachment of its distal portion, simulating the effect of the experimental injury. Similar constriction of the tail followed by auto-amputation occurs if the embryonic membranes are incised but the tail is left intact. In neither case does the tail regenerate after such auto-amputation. Small outgrowths resembling regenerates were formed, however, in certain cases where the tail was amputated under circumstances in which constrictions could not develop. Although amputation of the tail in very late embryos was followed by the appearance of constrictions, these failed to compress the tissues sufficiently to cause subsequent auto-amputation; regeneration of the stump normally took place. The constrictions described are comparable with the amniotic bands alleged to cause congenital amputation of the extremities in man.  相似文献   

8.
Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp).The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC.We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation.These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration.  相似文献   

9.
Using an antibody against a lizard telomerase‐1 component the presence of telomerase has been detected in regenerating lizard tails where numerous cells are proliferating. Immunoblots showed telomerase positive bands at 75–80 kDa in normal tissues and at 50, 75, and 90 kDa in those regenerating. Immunofluorescence and ultrastructural immunolocalization showed telomerase‐immunoreactivity in sparCe (few/diluted) mesenchymal cells of the blastema, early regenerating muscles, perichondrium of the cartilaginous tube, ependyma of the spinal cord, and in the regenerating epidermis. Clusters of gold particles were detected in condensing chromosomes of few mesenchymal and epithelial cells in the regenerating tail, but a low to undetectable labeling in interphase cells. Telomerase‐immunoreactivity was intense in the nucleus and sparCe (few/diluted) in the cytoplasm of spermatogonia and spermatocytes and drastically decreased in early spermatids where some nuclear labeling remains. Some intense immunoreactivity was seen in few cells near the basal membrane of intestinal enterocytes or in leukocytes (likely lymphocytes) of the intestine mucosa. In spermatogonia, spermatids and in enterocytes part of the nuclear labeling formed cluster of gold particles in dense areas identified as Cajal Bodies, suggesting that telomerase is a marker for these stem cells. This therefore suggests that also the sparCe (few/diluted) telomerase positive cells detected in the regenerating tail may represent sparCe (few/diluted) stem cells localized in regenerating tissues where transit amplifying cells are instead preponderant to allow for tail growth. This observation supports previous studies indicating that few stem cells are present in the stump after tail amputation and give rise to transit amplifying cells for tail regeneration. J. Morphol. 276:748–758, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
One hundred and one patients with through-knee amputations attending the Manchester limb-fitting centre are reviewed. Most amputations were performed for trauma or vascular disease. The interval from amputation to measurement for the first prosthesis averaged 12 weeks in cases of primary healing, and 21 weeks when healing was delayed. Artificial limbs were successfully fitted to 83%, and only 10% failed to use either a limb or a pylon. Three-quarters of those with outdoor mobility returned to work.Disarticulation through the knee has several advantages over above-knee amputation: in particular, the long end-bearing stump facilitates balance and control of the prosthesis. Disadvantages are a tendency to slow healing of the wound, lack of an internal knee mechanism in the artificial limb, and the bulky appearance of the limb. The results of rehabilitation could be improved by careful selection of patients and attention to operative detail; stump bandaging and exercises; earlier attendance at the limb-fitting centre to be measured for pylon or artificial limb; and improvements in design and production of prostheses.  相似文献   

11.
Six patients with insufficient soft-tissue coverage after lower limb trauma were treated with pedicled fillet of foot flaps to achieve primary stump closure and to preserve leg length. The flaps used were all based on either the posterior tibial neurovascular pedicle, the anterior tibial neurovascular pedicle, or both. Five flaps survived; one patient required conversion of a through-knee to an above-knee amputation and debridement of the flap because of venous thrombosis of the pedicle. In three of the cases, a functional knee joint was preserved. The patients ranged in age from 21 to 54 years, the mean hospital stay was 55.5 days (range, 28 to 76 days), and the mean follow-up time was 14.5 months. Despite an average of 4.3 procedures from initial admission to first discharge and an average of 2.0 postamputation procedures to achieve primary stump healing, all patients have achieved independent mobility with their prosthesis. The advantages of preserving leg length and, where possible, preserving a functional knee joint compensate for repeated procedures on these patients. When planned well, a pedicled fillet of foot flap therefore achieves the aims of amputation, namely, providing primary healing of a sensate, durable, cylindrical stump that is pain-free and preserves maximal leg length. This is achieved with no donor-site morbidity and with no need for microvascular reconstruction.  相似文献   

12.
Immediately following amputation through the eyestalk of the mystery snail (Pomacea), a persistent ionic current enters the apical amputation surface of the eyestalk stump. The circuit is completed by current driven from undamaged integument of the eyestalk stump and other body regions. The current is relatively steady during the first 10 hours following amputation. Currents subsequently begin a slow decline to base line levels by 60 hours postamputation--a time coincident with wound healing processes. The "battery" driving this ionic current is the internally negative transepidermal potential existing across the snail integument--perhaps the result of a net inward pumping of chloride across the skin. This system is compared to other regeneration models such as the amphibian limb, bone fracture repair, and skin wound healing. We suggest that ionic current may be a control of eye regeneration in the snail.  相似文献   

13.
Araújo, T.H., Faria, F.P., Katchburian, E. and Freymüller, E. (2009). Ultrastructural changes in skeletal muscle of the tail of the lizard Hemidactylus mabouia immediately following autotomy. —Acta Zoologica (Stockholm) 91 : 440–446. Although autotomy and subsequent regeneration of lizard tails has been extensively studied, there is little information available on ultrastructural changes that occur to the muscle fibers at the site of severance. Thus, in the present study, we examine the ultrastructure of the musculature of the remaining tail stump of the lizard Hemidactylus mabouia immediately after autotomy. Our results show that exposed portions of the skeletal muscle fibers of the stump that are unprotected by connective tissue bulge to produce large mushroom‐like protrusions. These exposed portions show abnormal structure but suffer no leakage of cytoplasmic contents. Many small and large vesicular structures appeared between myofibrils in the interface at this disarranged region (distal) and the other portion of the fibers that remain unchanged (proximal). These vesicles coalesce, creating a gap that leads to the release of the mushroom‐like protrusion. So, our results showed that after the macroscopic act of autotomy the muscular fibers release part of the sarcoplasm as if a second and microscopic set of autotomic events takes place immediately following the macroscopic act of autotomy. Presumably these changes pave the way for the formation of a blastema and the beginning of regeneration.  相似文献   

14.
Xenopus laevis tadpoles can regenerate tail, including spinal cord, after partial amputation, but lose this ability during a specific period around stage 45. They regain this ability after stage 45. What happens during this “refractory period” might hold the key to spinal cord regeneration. We hypothesize that electric currents at amputated stumps play significant roles in tail regeneration. We measured electric current at tail stumps following amputation at different developmental stages. Amputation induced large outward currents leaving the stump. In regenerating stumps of stage 40 tadpoles, a remarkable reversal of the current direction occurred around 12-24 h post-amputation, while non-regenerating stumps of stage 45 tadpole maintained outward currents. This reversal of electric current at tail stumps correlates with whether tails regenerate or not (regenerating stage 40—inward current; non-regenerating stage 45—outward current). Reduction of tail stump current using sodium-free solution decreased the rate of regeneration and percentage regeneration. Fin punch wounds healed normally at stages 45 and 48, and in sodium-free solution, suggesting that the absence of tail re-growth at stage 45 is regeneration-specific rather than a general inhibition of wound healing. These data suggest that electric signals might be one of the key players regulating regeneration.  相似文献   

15.
It is well-known that some species of lizard have an exceptional ability known as caudal autotomy (voluntary self-amputation of the tail) as an anti-predation mechanism. After amputation occurs, they can regenerate their new tails in a few days. The new tail section is generally shorter than the original one and is composed of cartilage rather than vertebrae bone. In addition, the skin of the regenerated tail distinctly differs from its original appearance. We performed a proteomics analysis for extracts derived from regenerating lizard tail tissues after amputation and found that endoplasmin (ENPL) was the main factor among proteins up-regulated in expression during regeneration. Thus, we performed further experiments to determine whether ENPL could induce chondrogenesis of tonsil-derived mesenchymal stem cells (T-MSCs). In this study, we found that chondrogenic differentiation was associated with an increase of ENPL expression by ER stress. We also found that ENPL was involved in chondrogenic differentiation of T-MSCs by suppressing extracellular signal-regulated kinase (ERK) phosphorylation.  相似文献   

16.
For over two decades, we have been investigating a strong (ca. 20-100 microA/cm2), outwardly directed electric current driven through the limb stump for the first few days following amputation in regenerating salamanders. This current is driven through the stump in a proximal/distal direction by the amiloride-sensitive transcutaneous voltage of the intact skin of the stump. Limb regeneration can be manipulated by several technique that manipulate this physiology, demonstrating that the ionic current is necessary, but not sufficient, for normal regeneration of the amphibian limb. Here, we demonstrate that a full thickness graft of skin covering the forelimb stump of newts strikingly inhibits the regeneration of the limb, and that this procedure is also highly correlated to a suppression of peak outwardly directed stump currents in those animals that fail to regenerate.  相似文献   

17.
Amputated, regenerating forelimbs have been compared with the contralateral, denervated non-regenerating limb stumps in the adult newt Notophthalmus viridescens, with respect to hyaluronidase activity and the incorporation of 3H-acetate into glycosaminoglycans (GAG). At 10 days after amputation, which is the time of maximum hyaluronate production in the early growing regenerate, incorporation of 3H-acetate into GAG (cpm/mg protein) in the denervated, nonregenerating limb stump was approximately 50% of that in the contralateral regenerating limbs. At this stage, hyaluronate was the major GAG being produced, but the ratio of incorporation into hyaluronate relative to chondroitin sulfate was reduced in the denervated limbs. In intact, nonamputated limbs, the incorporation into GAG was 5% of that in the regenerating limb 10 days after amputation, and 10% of that in the denervated stumps.At 25 days, cartilage is forming and chondroitin sulfate synthesis predominates in the normal regenerate whilst the contralateral, denervated limb stumps are forming scars. GAG synthesis in the latter was less than one-quarter the level seen in the regenerating limbs, mostly due to low incorporation into chondroitin sulfate.Hyaluronidase activity, which appears in the regenerating limb during differentiation of skeletal elements (20–45 days), was not detectable in limbs denervated early enough to prevent regeneration. However, limbs denervated after formation of the blastema will regenerate without nerve, and hyaluronidase activity in such limbs was normal. Thus, hyaluronidase activity appears when regeneration reaches the cartilage deposition stage, with or without nerve.  相似文献   

18.
When anuran tadpoles are treated with vitamin A after tail amputation, hindlimb‐like structures can be generated instead of the lost tail part at the amputation site. This homeotic transformation was initially expected to be a key to understanding the body plan of vertebrates. Unfortunately, homeotic limb formation has been reproduced in only some Indian frog species and a European species, but not in experimental anurans such as Xenopus laevis or Rana catesbeiana. Consequently, this fascinating phenomenon has not been well analyzed, especially at the molecular level. In addition, the initial processes of ectopic limb development are also unclear because morphological changes in the early phases have not been analyzed in detail. In this study, we report the induction of homeotic transformation using Japanese brown frogs and present a detailed morphological analysis. Unexpectedly, the ectopic limbs developed not only at the ventral sites, but also at the dorsal sites of the tail regenerates of vitamin A‐treated tadpoles. The relationship between position and axial orientation of ectopic limbs suggested the double duplication of positional value order along the rostral‐caudal axis and the dorsal‐ventral axis of the tail regenerates.  相似文献   

19.
20.
Phantom pain is a frequent consequence of the amputation of an extremity and causes considerable discomfort and disruption of daily activities. This study describes a patient with extreme phantom limb pain following amputation of the right upper limb. The treatment consisted of 6 sessions of EMG biofeedback followed by 6 sessions of temperature biofeedback. The patient did not use a prosthesis and had not received previous treatment for chronic pain. Results demonstrated complete elimination of phantom limb pain after treatment, which was maintained at a 3- and 12-month follow-up. Pain relief covaried with increase in skin temperature at stump and perceptual telescoping (retraction of phantom limb into stump).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号