首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Ethylene response factor (ERF) proteins regulate a variety of stress responses in plant. JERF1, a tomato ERF protein, can be induced by abscisic acid (ABA). Overexpression of JERF1 enhanced the tolerance of transgenic tobacco to high salt concentration, osmotic stress, and low temperature by regulating the expression of stress-responsive genes by binding to DRE/CRT and GCC-box cis-elements. In this research, we further report that overexpression of JERF1 significantly enhanced drought tolerance of transgenic rice. The overexpression activated the expression of stress-responsive genes and increased the synthesis of the osmolyte proline by regulating the expression of OsP5CS, encoding the proline biosynthesis key enzyme deltal-pyrroline-5-carboxylate synthetase. JERF1 also activated the expression of two ABA biosynthesis key enzyme genes, OsABA2 and Os03g0810800, and increased the synthesis of ABA in rice. Analysis of cis-elements of JERF1-targeted genes pointed to the existence of DRE/CRT and/or GCC box in their promoters, indicating that JERF1 could activate the expression of related genes in rice by binding to these cis-elements. Unlike some other ERF proteins, constructive overexpression of JERF1 did not change the growth and development of transgenic rice, which makes JEFR1 a potentially useful source in breeding for greater tolerance to abiotic stress.  相似文献   

2.
3.
4.
5.
6.
Although recent studies have established a significant regulatoryrole for abscisic acid (ABA) and ethylene response factor (ERF)proteins in plant pathogen resistance, it is not clear whetherand how ABA performs this role. Previously, it was reportedthat an ERF protein, TSRF1, activates the expression of GCCbox-containing genes and significantly enhances the resistanceto Ralstonia solanacearum in both tobacco and tomato plants.Here, it is reported that TSRF1-regulated pathogen resistanceis modified by ABA application. TSRF1 activates the expressionof ABA biosynthesis-related genes, resulting in the increaseof ABA biosynthesis, which further stimulates ethylene production.More interestingly, ABA application decreases, while the inhibitorof ABA biosynthesis fluridone increases, the TSRF1-enhancedresistance to R. solanacearum. This observation is further supportedby the finding that ABA and fluridone reversibly modify theability of TSRF1 to bind the ethylene-responsive GCC box, consequentlyaltering the expression of element-controlled genes. These resultstherefore establish that TSRF1-regulated resistance to R. solanacearumcan be modified in tobacco by ABA. Key words: Abscisic acid, ERF protein TSRF1, GCC box-containing genes, Ralstonia solanacearum, tobacco  相似文献   

7.
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while l ‐ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co‐expressing stylo 9‐cis‐epoxycarotenoid dioxygenase (SgNCED1) and yeast d ‐arabinono‐1,4‐lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild‐type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co‐expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought‐responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold‐responsive genes, but not in SgNCED1 plants. Co‐expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold‐responsive genes. Our result suggests that co‐expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality.  相似文献   

8.
9.
Zhang L  Xiao S  Li W  Feng W  Li J  Wu Z  Gao X  Liu F  Shao M 《Journal of experimental botany》2011,62(12):4229-4238
Harpin proteins are well known as eliciters that induce multiple responses in plants, such as systemic acquired resistance, hypersensitive response, enhancement of growth, resistance to the green peach aphid, and tolerance to drought. Overexpression of Harpin-encoding genes enhances plant resistance to diseases in tobacco, rice, rape, and cotton; however, it is not yet known whether the expression of Harpin-encoding genes in vivo improves plant tolerance to abiotic stresses. The results of this study showed that overexpression of a Harpin-encoding gene hrf1 in rice increased drought tolerance through abscisic acid (ABA) signalling. hrf1- overexpression induces an increase in ABA content and promotes stomatal closure in rice. The hrf1 transgenic rice lines exhibited a significant increase in water retention ability, levels of free proline and soluble sugars, tolerance to oxidative stress, reactive oxygen species-scavenging ability, and expression levels of four stress-related genes, OsLEA3-1, OsP5CS, Mn-SOD, and NM_001074345, under drought stress. The study confirmed that hrf1 conferred enhanced tolerance to drought stress on transgenic crops. These results suggest that Harpins may offer new opportunities for generating drought resistance in other crops.  相似文献   

10.
11.
12.
13.
SUMOylation is an important post‐translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS‐type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene (SlSIZ1) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up‐regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H2O2) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1‐2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress.  相似文献   

14.
15.
16.
Zhang L  Xi D  Li S  Gao Z  Zhao S  Shi J  Wu C  Guo X 《Plant molecular biology》2011,77(1-2):17-31
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.  相似文献   

17.
18.
Gao S  Zhang H  Tian Y  Li F  Zhang Z  Lu X  Chen X  Huang R 《Plant cell reports》2008,27(11):1787-1795
Drought and high-salinity are the important constraints that severely affect plant development and crop yield worldwide. It has been established that ethylene response factor (ERF) proteins play important regulatory roles in plant response to abiotic and biotic stresses. Our previous researches have revealed that transgenic tobacco over-expressing TERF1 (encoding a tomato ERF protein) showed enhanced tolerance to abiotic stress. Here, we further investigate the function of TERF1 in transgenic rice. Compared with the wild-type plants, overexpression of TERF1 resulted in an increased tolerance to drought and high-salt in transgenic rice. And the enhanced tolerance may be associated with the accumulation of proline and the decrease of water loss. Furthermore, TERF1 can effectively regulate the expression of stress-related functional genes Lip5, Wcor413-l, OsPrx and OsABA2, as well as regulatory genes OsCDPK7, OsCDPK13 and OsCDPK19 under normal growth conditions. Our analyses of cis-acting elements show that there exist DRE/CRT and/or GCC-box existing in TERF1 targeted gene promoters. Our results revealed that ectopic expression of TERF1 in rice caused a series of molecular and physiological alterations and resulted in the transgenic rice with enhanced tolerance to abiotic stress, indicating that TERF1 might have similar regulatory roles in response to abiotic stress in tobacco and rice. Shumei Gao, Haiwen Zhang and Yun Tian contributed equally to this work.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号