首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the acquisition of complete genome sequences from several animals, there is renewed interest in the pattern of genome evolution on our own lineage. One key question is whether gene number increased during chordate or vertebrate evolution. It is argued here that comparing the total number of genes between a fly, a nematode and human is not appropriate to address this question. Extensive gene loss after duplication is one complication; another is the problem of comparing taxa that are phylogenetically very distant. Amphioxus and tunicates are more appropriate animals for comparison to vertebrates. Comparisons of clustered homeobox genes, where gene loss can be identified, reveals a one to four mode of evolution for Hox and ParaHox genes. Analyses of other gene families in amphioxus and vertebrates confirm that gene duplication was very widespread on the vertebrate lineage. These data confirm that vertebrates have more genes than their closest invertebrate relatives, acquired through gene duplication. abbreviations IHGSC, International Human Genome Sequencing Consortium; TCESC, The C. elegans Sequencing Consortium.  相似文献   

2.
Rickettsia are best known as strictly intracellular vector‐borne bacteria that cause mild to severe diseases in humans and other animals. Recent advances in molecular tools and biological experiments have unveiled a wide diversity of Rickettsia spp. that include species with a broad host range and some species that act as endosymbiotic associates. Molecular phylogenies of Rickettsia spp. contain some ambiguities, such as the position of R. canadensis and relationships within the spotted fever group. In the modern era of genomics, with an ever‐increasing number of sequenced genomes, there is enhanced interest in the use of whole‐genome sequences to understand pathogenesis and assess evolutionary relationships among rickettsial species. Rickettsia have small genomes (1.1–1.5 Mb) as a result of reductive evolution. These genomes contain split genes, gene remnants and pseudogenes that, owing to the colinearity of some rickettsial genomes, may represent different steps of the genome degradation process. Genomics reveal extreme genome reduction and massive gene loss in highly vertebrate‐pathogenic Rickettsia compared to less virulent or endosymbiotic species. Information gleaned from rickettsial genomics challenges traditional concepts of pathogenesis that focused primarily on the acquisition of virulence factors. Another intriguing phenomenon about the reduced rickettsial genomes concerns the large fraction of non‐coding DNA and possible functionality of these “non‐coding” sequences, because of the high conservation of these regions. Despite genome streamlining, Rickettsia spp. contain gene families, selfish DNA, repeat palindromic elements and genes encoding eukaryotic‐like motifs. These features participate in sequence and functional diversity and may play a crucial role in adaptation to the host cell and pathogenesis. Genome analyses have identified a large fraction of mobile genetic elements, including plasmids, suggesting the possibility of lateral gene transfer in these intracellular bacteria. Phylogenetic analyses have identified several candidates for horizontal gene acquisition among Rickettsia spp. including tra, pat2, and genes encoding for the type IV secretion system and ATP/ADP translocase that may have been acquired from bacteria living in amoebae. Gene loss, gene duplication, DNA repeats and lateral gene transfer all have shaped rickettsial genome evolution. A comprehensive analysis of the entire genome, including genes and non‐coding DNA, will help to unlock the mysteries of rickettsial evolution and pathogenesis.  相似文献   

3.
The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome—one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte‐derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid‐type glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte‐derived tertiary plastids: “gapC1h” acquired from the haptophyte endosymbiont and “gapC1p” inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid‐type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT‐derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.  相似文献   

4.
Gene translocations from the organelles to the nucleus are postulated by the endosymbiont hypothesis. We here report evidence for sequence insertions in the nuclear genomes of plants that are derived from noncoding regions of the mitochondrial genome. Fragments of mitochondrial group II introns are identified in the nuclear genomes of tobacco and a bean species. The duplicated intron sequences of 75–140 bp are derived from cis- and trans-splicing introns of genes encoding subunits 1 and 5 of the NADH dehydrogenase. The mitochondrial sequences are inserted in the vicinities of a lectin gene, different glucanase genes and a gene encoding a subunit of photosystem II. Sequence similarities between the nuclear and mitochondrial copies are in the range of 80 to 97%, suggesting recent transfer events that occurred in the basic glucanase genes before and in the lectin gene after the gene duplications in the evolution of the nuclear gene families. Overlapping regions of the same introns are in two instances also involved in intramitochondrial sequence duplications. Correspondence to: V. Knoop  相似文献   

5.
Abstract More than 190 plastid genomes have been completely sequenced during the past two decades due to advances in DNA sequencing technologies. Based on this unprecedented abundance of data, extensive genomic changes have been revealed in the plastid genomes. Inversion is the most common mechanism that leads to gene order changes. Several inversion events have been recognized as informative phylogenetic markers, such as a 30‐kb inversion found in all living vascular plants minus lycopsids and two short inversions putatively shared by all ferns. Gene loss is a common event throughout plastid genome evolution. Many genes were independently lost or transferred to the nuclear genome in multiple plant lineages. The trnR‐CCG gene was lost in some clades of lycophytes, ferns, and seed plants, and all the ndh genes were absent in parasitic plants, gnetophytes, Pinaceae, and the Taiwan moth orchid. Certain parasitic plants have, in particular, lost plastid genes related to photosynthesis because of the relaxation of functional constraint. The dramatic growth of plastid genome sequences has also promoted the use of whole plastid sequences and genomic features to solve phylogenetic problems. Chloroplast phylogenomics has provided additional evidence for deep‐level phylogenetic relationships as well as increased phylogenetic resolutions at low taxonomic levels. However, chloroplast phylogenomics is still in its infant stage and rigorous analysis methodology has yet to be developed.  相似文献   

6.
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR‐retrotransposons, the rates of synonymous and non‐synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non‐synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter‐specific asymmetric evolution.  相似文献   

7.
8.
The discovery in invertebrates of ciliary photoreceptor cells and ciliary (c)-opsins established that at least two of the three elements that characterize the vertebrate photoreceptor system were already present before vertebrate evolution. However, the origin of the third element, a series of biochemical reactions known as the "retinoid cycle," remained uncertain. To understand the evolution of the retinoid cycle, I have searched for the genetic machinery of the cycle in invertebrate genomes, with special emphasis on the cephalochordate amphioxus. Amphioxus is closely related to vertebrates, has a fairly prototypical genome, and possesses ciliary photoreceptor cells and c-opsins. Phylogenetic and structural analyses of the amphioxus sequences related with the vertebrate machinery do not support a function of amphioxus proteins in chromophore regeneration but suggest that the genetic machinery of the retinoid cycle arose in vertebrates due to duplications of ancestral nonvisual genes. These results favor the hypothesis that the retinoid cycle machinery was a functional innovation of the primitive vertebrate eye.  相似文献   

9.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

10.
The widely accepted notion that two whole-genome duplications occurred during early vertebrate evolution (the 2R hypothesis) stems from the fact that vertebrates often possess several genes corresponding to a single invertebrate homolog. However the number of genes predicted by the Human Genome Project is less than twice as many as in the Drosophila melanogaster or Caenorhabditis elegans genomes. This ratio could be explained by two rounds of genome duplication followed by extensive gene loss, by a single genome duplication, by sequential local duplications, or by a combination of any of the above. The traditional method used to distinguish between these possibilities is to reconstruct the phylogenetic relationships of vertebrate genes to their invertebrate orthologs; ratios of invertebrate-to-vertebrate counterparts are then used to infer the number of gene duplication events. The lancelet, amphioxus, is the closest living invertebrate relative of the vertebrates, and unlike protostomes such as flies or nematodes, is therefore the most appropriate outgroup for understanding the genomic composition of the last common ancestor of all vertebrates. We analyzed the relationships of all available amphioxus genes to their vertebrate homologs. In most cases, one to three vertebrate genes are orthologous to each amphioxus gene (median number=2). Clearly this result, and those of previous studies using this approach, cannot distinguish between alternative scenarios of chordate genome expansion. We conclude that phylogenetic analyses alone will never be sufficient to determine whether genome duplication(s) occurred during early chordate evolution, and argue that a "phylogenomic" approach, which compares paralogous clusters of linked genes from complete amphioxus and human genome sequences, will be required if the pattern and process of early chordate genome evolution is ever to be reconstructed.  相似文献   

11.
Genome deterioration: loss of repeated sequences and accumulation of junk DNA   总被引:18,自引:0,他引:18  
A global survey of microbial genomes reveals a correlation between genome size, repeat content and lifestyle. Free-living bacteria have large genomes with a high content of repeated sequences and self-propagating DNA, such as transposons and bacteriophages. In contrast, obligate intracellular bacteria have small genomes with a low content of repeated sequences and no or few genetic parasites. In extreme cases, such as in the 650kb-genomes of aphid endosymbionts of the genus Buchnera all repeated sequences above 200bp have been eliminated. We speculate that the initial downsizing of the genomes of obligate symbionts and parasites occurred by homologous recombination at repeated genes, leading to the loss of large blocks of DNA as well as to the consumption of repeated sequences. Further sequence elimination in these small genomes seems primarily to result from the accumulation of short deletions within genic sequences. This process may lead to temporary increases in the genomic content of pseudogenes and junk DNA. We discuss causes and long-term consequences of extreme genome size reductions in obligate intracellular bacteria.  相似文献   

12.
A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron‐rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification.  相似文献   

13.
The origin of the vertebrates was a major event in the evolution of morphological diversity and the genetic mechanisms responsible for this diversity, once purely theoretical, can now be approached experimentally in the genome era. With a prototypical chordate genome, vertebrate-like development and simple morphology, amphioxus provides the appropriate model for investigating the origin of the vertebrates. Comparative genomics is revealing that both conservation and divergence of genes and cis-regulatory elements involved in developmental regulatory networks are required to shape different animal body plans. This article reviews the cis-regulatory studies performed in amphioxus, the discovery of conserved non-coding elements (CNEs) across the metazoans and the examination of amphioxus CNEs. Emerging ideas on the evolution of CNEs after large-scale genome duplication events and the state of cephalochordate genomics are also discussed.  相似文献   

14.
文昌鱼特异的基因倍增   总被引:1,自引:0,他引:1  
王蔚  宿兵  王义权 《遗传》2005,27(1):143-149
进化生物学和发育生物学的结合产生了一门新兴学科——进化发育生物学,近年来该领域研究取得了丰硕的成果。头索动物文昌鱼是现存生物中最近似于脊椎动物直接祖先的生物,在与脊椎动物分化后形态改变很小,其基因组未曾经历大规模的基因组倍增,在一定程度上反映了脊椎动物祖先型基因组的特征,但在漫长的独立进化历程中基因组自身还是经历了一些变化。本文介绍了在几例在文昌鱼支系中独立发生的基因倍增事件(Hox; Evx; HNF-3; Calmodulin-like),有力地揭示了文昌鱼虽然与脊椎动物直接祖先极其接近,但其基因组有其自身特性,不能简单地将之等同于脊椎动物直接祖先。Abstract: The union of the two complementary disciplines, developmental biology and evolutionary biology resulted in a new division of evolutionary developmental biology, namely “Evo-Devo”. Recently, the research on this field has been fruitful in understanding the origin and development of vertebrates. The cephalochordate amphioxus, which remains in relatively invariant morphology since the divergence from the vertebrate lineage, is the closest living relative to vertebrates. The vertebrate-like simple body plan and preduplicative genome provide amphioxus genes the privilege to serve as key landmark to understand morphological evolution. However, the amphioxus genome has not escaped evolution. In this paper several examples of independent gene (Hox; Evx; HNF-3 and Calmodulin-like) duplications in the cephalochordate lineage were summarized. These particularities and oddities remind the fact that amphioxus is not an immediate ancestor of the vertebrates but ‘only’ the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

15.
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.  相似文献   

16.
A flurry of recent publications have challenged consensus views on the tempo and mode of plastid (chloroplast) evolution in eukaryotes and, more generally, the impact of endosymbiosis in the evolution of the nuclear genome. Endosymbiont‐to‐nucleus gene transfer is an essential component of the transition from endosymbiont to organelle, but the sheer diversity of algal‐derived genes in photosynthetic organisms such as diatoms, as well as the existence of genes of putative plastid ancestry in the nuclear genomes of plastid‐lacking eukaryotes such as ciliates and choanoflagellates, defy simple explanation. Collectively, these papers underscore the power of comparative genomics and, at the same time, reveal how little we know with certainty about the earliest stages of the evolution of photosynthetic eukaryotes. Editor's suggested further reading in BioEssays Early steps in plastid evolution: current ideas and controversies Abstract Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology Abstract  相似文献   

17.
Horizontal gene transfer (HGT), a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of HGT on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. This issue, however, remains unresolved because the various methods developed to detect potential HGT events identify different sets of genes. The present-day consensus is that phylogenetic analysis of individual genes is still the most objective and accurate approach for determining the occurrence and directionality of HGT. Here we present a genome-scale phylogenetic analysis of protein-encoding genes from five closely related Chlamydia, identifying a reliable set of sequences that have arisen via HGT since the divergence of the Chlamydia lineage. According to our knowledge, this is the first systematic phylogenetic inference-based attempt to establish a reliable set of acquired genes in a bacterial genome. Although Chlamydia are obligate intracellular parasites of higher eukaryotes, and thus suspected to be isolated from HGT more than the free-living species, our results show that their diversification has involved the introduction of foreign sequences into their genome. Furthermore, we also identified a complete set of genes that have undergone deletion, duplication, or rearrangement during this evolutionary period leading to the radiation of Chlamydia species. Our analysis may provide a deeper insight into how these medically important pathogens emerged and evolved from a common ancestor.  相似文献   

18.
Qingke, the local name of hulless barley in the Tibetan Plateau, is a staple food for Tibetans. The availability of its reference genome sequences could be useful for studies on breeding and molecular evolution. Taking advantage of the third‐generation sequencer (PacBio), we de novo assembled a 4.84‐Gb genome sequence of qingke, cv. Zangqing320 and anchored a 4.59‐Gb sequence to seven chromosomes. Of the 46,787 annotated ‘high‐confidence’ genes, 31 564 were validated by RNA‐sequencing data of 39 wild and cultivated barley genotypes with wide genetic diversity, and the results were also confirmed by nonredundant protein database from NCBI. As some gaps in the reference genome of Morex were covered in the reference genome of Zangqing320 by PacBio reads, we believe that the Zangqing320 genome provides the useful supplements for the Morex genome. Using the qingke genome as a reference, we conducted a genome comparison, revealing a close genetic relationship between a hulled barley (cv. Morex) and a hulless barley (cv. Zangqing320), which is strongly supported by the low‐diversity regions in the two genomes. Considering the origin of Morex from its breeding pedigree, we then demonstrated a close genomic relationship between modern cultivated barley and qingke. Given this genomic relationship and the large genetic diversity between qingke and modern cultivated barley, we propose that qingke could provide elite genes for barley improvement.  相似文献   

19.
Identification of conserved genomic regions within and between different genomes is crucial when studying genome evolution. Here, we described regions of strong synteny conservation between vertebrate deuterostomes (tetrapods and teleosts) and invertebrate deuterostomes (amphioxus and sea urchin). The shared gene contents across phylogenetically distant species demonstrate that the conservation of the regions stemmed from an ancestral segment instead of a series of independent convergent events. Comparison of the syntenic regions allows us to postulate the primitive gene organization in the last common ancestor of deuterostomes and the evolutionary events that occurred to the 3 distinct lineages of sea urchin, amphioxus, and vertebrates after their separation. In addition, alignment of the syntenic regions led to the identification of 8 noncoding evolutionarily conserved regions shared between amphioxus and vertebrates. To our knowledge, this is the first report of conserved noncoding sequences shared by vertebrates and nonvertebrates. These noncoding sequences have high possibility of being elements that regulate neighboring genes. They are likely to be a factor in the maintenance of conserved synteny over long phylogenetic distance in different deuterostome lineages.  相似文献   

20.
 The embryonic development of amphioxus (cephalochordates) has much in common with that of vertebrates, suggesting a close phylogenetic relationship between the two chordate groups. To gain insight into alterations in the genetic cascade that accompanied the evolution of vertebrate embryogenesis, we investigated the formation of the chordamesoderm in amphioxus embryos using the genes Brachyury and fork head/HNF-3 as probes. Am(Bb)Bra1 and Am(Bb)Bra2 are homologues of the mouse Brachyury gene isolated from Branchiostoma belcheri. Molecular phylogenetic analysis suggests that the genes are independently duplicated in the amphioxus lineage. Both genes are initially expressed in the involuting mesoderm of the gastrula, then in the differentiating somites of neurulae, followed by the differentiating notochord and finally in the tail bud of ten-somite stage embryos. On the other hand, Am(Bb)fkh/HNF3-1, an amphioxus (B. belcheri) homologue of the fork head/HNF-3 gene, is initially expressed in the invaginating endoderm and mesoderm, then later in the differentiating notochord and in the tail bud. With respect to these two types of genes, the formation of the notochord and tail bud in amphioxus embryos shows similarity and dissimilarity with that of the notochord and tail bud in vertebrate embryos. Received: 21 November 1996 / Accepted: 24 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号