首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background and Aims

At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions.

Methods

Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions.

Key Results

Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis.

Conclusions

Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.  相似文献   

2.
Summary A model of daily canopy photosynthesis was constructed taking light and leaf nitrogen distribution in the canopy into consideration. It was applied to a canopy of Solidago altissima. Both irradiance and nitrogen concentration per unit leaf area decreased exponentially with increasing cumulative leaf area from the top of the canopy. The photosynthetic capacity of a single leaf was evaluated in relation to irradiance and nitrogen concentration. By integration, daily canopy photosynthesis was calculated for various canopy architectures and nitrogen allocation patterns. The optimal pattern of nitrogen distribution that maximizes the canopy photosynthesis was determined. Actual distribution of leaf nitrogen in the canopy was more uniform than the optimal one, but it realized over 20% more photosynthesis than that under uniform distribution and 4.7% less photosynthesis than that under the optimal distribution. Redeployment of leaf nitrogen to the top of the canopy with ageing should be more effective in increasing total canopy photosynthesis in a stand with a dense canopy than in a stand with an open canopy.  相似文献   

3.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

4.
Light-emitting diodes as a light source for photosynthesis research   总被引:10,自引:0,他引:10  
Light-emitting diodes (LED) can provide large fluxes of red photons and so could be used to make lightweight, efficient lighting systems for photosynthetic research. We compared photosynthesis, stomatal conductance and isoprene emission (a sensitive indicator of ATP status) from leaves of kudzu (Pueraria lobata (Willd) Ohwi.) enclosed in a leaf chamber illuminated by LEDs versus by a xenon arc lamp. Stomatal conductance was measured to determine if red LED light could sufficiently open stomata. The LEDs produced an even field of red light (peak emission 656±5 nm) over the range of 0–1500 mol m-2 s-1. Under ambient CO2 the photosynthetic response to red light deviated slightly from the response measured in white light and stomatal conductance followed a similar pattern. Isoprene emission also increased with light similar to photosynthesis in white light and red light. The response of photosynthesis to CO2 was similar under the LED and xenon arc lamps at equal photosynthetic irradiance of 1000 mol m-2 s-1. There was no statistical difference between the white light and red light measurements in high CO2. Some leaves exhibited feedback inhibition of photosynthesis which was equally evident under irradiation of either lamp type. Photosynthesis research including electron transport, carbon metabolism and trace gas emission studies should benefit greatly from the increased reliability, repeatability and portability of a photosynthesis lamp based on light-emitting diodes.  相似文献   

5.

Background and Aims

Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods

A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes.

Key Results

In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %.

Conclusions

Based on the results, maintaining biochemical capacity of the middle–lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.  相似文献   

6.
We compared growth and the content of sugar, protein, and photosynthetic pigments, as well as chlorophyll fluorescence parameters in 15- and 27-day-old Chinese cabbage (Brassica chinensis L.) plants grown under a high-pressure sodium (HPS) lamps or a light source built on the basis of red (650 nm) and blue (470 nm) light-emitting diodes (LEDs) with a red to blue photon ratio of 7: 1. One group of plants was grown at a photosynthetic photon flux (PPF) level of 391 ± 24 μ mol/(m2 s) (normal level); the other, at a PPF level of 107 ± 9 μ mol/(m2 s) (low light). Plants of the third group were firstly grown at the low light and then (on the 12th day) transferred to the normal level. When grown at the normal PPF level, the plants grown under LEDs didn’t differ from plants grown under HPS lamps in shoot fresh weight, but they showed a lower root fresh and dry weights and the lower content of total sugar and sugar reserves in the leaves. No differences in the pigment content and photosystem II quantum yield were found; however, a higher Chl a/b ratio in plants grown under LEDs indicates a different proportion of functional complexes in thylakoid membranes. The response to low light conditions was mostly the same in plants grown under HPS lamps and LEDs; however, LED plants showed a lower growth rate and a higher nonphotochemical fluorescence quenching. In the case of the altered PPF level during growth, the plant photosynthetic apparatus adapted to new conditions of illumination within three days. Plants grown under HPS lamps at a constant normal PPF level and those transferred to the normal PPF level on the 12th day, on the 27th day didn’t differ in shoot fresh weight, but in plants grown under LEDs, the differences were considerable. Our results show that LED-based light sources can be used for plant growing. At the same time, some specific properties of plant photosynthesis and growth under these conditions of illumination were found.  相似文献   

7.
为研究间伐改形对红富士成龄乔化密植果园树体冠层特征、生育后期叶片生理特性、养分积累分配规律、光合生产力和土壤水分时空分布动态的影响,以18年生‘红富士’苹果密闭园为试材,对苹果树单株结构参数、枝量、枝类组成、覆盖率、叶片光合速率等参数进行测定.结果表明: 密闭果园叶片光合作用受非气孔因素限制,导致PSII最大光化学效率、PSII光合潜能、光合性能指数下降了1.2%、11.5%、13.9%.间伐改形后,叶面积指数、树冠覆盖率有所降低,使得冠层直射光透过系数增加了79.0%,树形结构有所改善.苹果园总枝数降低到约1100400条·hm-2,单株枝量增加了5.0%,短枝比例提高至73.0%.由于冠层光照条件的改善,叶面积、比叶质量、百叶重、叶绿素含量有不同程度的提高.叶片光合速率的提高促进了光合产物的积累,淀粉、蛋白质含量为密闭果园的143.5%、107.8%.叶片的发育质量与其所处的光照辐射环境有着密切联系,密闭果园经间伐、改形后,果园群体结构和冠层光照得以改善,促进了叶片生长发育,提高了叶片光合效能,降低了果园土壤水分的无效消耗,是陇东旱塬苹果产区密闭果园适宜的调整、优化方案.  相似文献   

8.
Analytical expressions for the contributions of sun and shade leaves to instantaneous canopy photosynthesis are derived. The analysis is based on four assumptions. First, that the canopy is closed in the sense that it is horizontally uniform. Secondly, that there is an exponential profile of light down the canopy with the same decay constant for light from different parts of the sky. Thirdly, that the leaf photosynthetic response to incident irradiance can be described by a three-parameter non-rectangular hyperbola (NRH). And lastly, that light acclimation at the leaf level occurs in only one parameter of the NRH, that describing the light-saturated photosynthetic rate, which is assumed to be proportional to the local averaged leaf irradiance. These assumptions have been extensively researched empirically and theoretically and their limitations are quite well understood. They have been widely used when appropriate. Combining these four assumptions permits the derivation of algebraic expressions for instantaneous canopy photosynthesis which are computationally efficient because they avoid the necessity for numerical integration down the canopy. These are valuable for modelling plant and crop ecosystems, for which canopy photosynthesis is the primary driver. Ignoring the sun/shade dichotomy can result in overestimates of canopy photosynthesis of up to 20 %, but using a rectangular hyperbola instead of a non-rectangular hyperbola to estimate canopy photosynthesis taking account of sun and shade leaves can lead to a similarly sized underestimate.  相似文献   

9.
The development of vertical canopy gradients of leaf N has beenregarded as an adaptation to the light gradient that helps tomaximize canopy photosynthesis. In this study we report thedynamics of vertical leaf N distribution during vegetative growthof wheat in response to changes in N availability and sowingdensity. The question of to what extent the observed verticalleaf N distribution maximized canopy photosynthesis was addressedwith a leaf layer model of canopy photosynthesis that integratesN-dependent leaf photosynthesis according to the canopy lightand leaf N distribution. Plants were grown hydroponically attwo amounts of N, supplied in proportion to calculated growthrates. Photosynthesis at light saturation correlated with leafN. The vertical leaf N distribution was associated with thegradient of absorbed light. The leaf N profile changed duringcrop development and was responsive to N availability. At highN supply, the leaf N profiles were constant during crop development.At low N supply, the leaf N profiles fluctuated between moreuniform and steep distributions. These changes were associatedwith reduced leaf area expansion and increasing N remobilizationfrom lower leaf layers. The distribution of leaf N with respectto the gradient of absorbed irradiance was close to the theoreticaloptimum maximizing canopy photosynthesis. Sensitivity analysisof the photosynthesis model suggested that plants maintain anoptimal vertical leaf N distribution by balancing the capacityfor photosynthesis at high and low light. Copyright 2000 Annalsof Botany Company Canopy photosynthesis, leaf nitrogen distribution, nitrogen, Triticum aestivum L, wheat  相似文献   

10.
Models have been formulated for monospecific stands in which canopy photosynthesis is determined by the vertical distribution of leaf area, nitrogen and light. In such stands, resident plants can maximize canopy photosynthesis by distributing their nitrogen parallel to the light gradient, with high contents per unit leaf area at the top of the vegetation and low contents at the bottom. Using principles from game theory, we expanded these models by introducing a second species into the vegetation, with the same vertical distribution of biomass and nitrogen as the resident plants but with the ability to adjust its specific leaf area (SLA, leaf area:leaf mass). The rule of the game is that invaders replace the resident plants if they have a higher plant carbon gain than those of the resident plants. We showed that such invaders induce major changes in the vegetation. By increasing their SLA, invading plants could increase their light interception as well as their photosynthetic nitrogen-use efficiency (PNUE, the rate of photosynthesis per unit organic nitrogen). By comparison with stands in which canopy photosynthesis is maximized, those invaded by species of high SLA have the following characteristics: (1) the leaf area index is higher; (2) the vertical distribution of nitrogen is skewed less; (3) as a result of the supra-optimal leaf area index and the more uniform distribution of nitrogen, total canopy photosynthesis is lower. Thus, in dense canopies we face a classical tragedy of the commons: plants that have a strategy to maximize canopy carbon gain cannot compete with those that maximize their own carbon gain. However, because of this strategy, individual as well as total canopy carbon gain are eventually lower. We showed that it is an evolutionarily stable strategy to increase SLA up to the point where the PNUE of each leaf is maximized.  相似文献   

11.
Seasonal changes and yearly gross canopy photosynthetic production were estimated for an 18 year old Japanese larch (Larix leptolepis) forest between 1982 and 1984. A canopy photosynthesis model was applied for the estimation, which took into account the effect of light interception by the non-photosynthetic organs. Seasonal changes in photosynthetic ability, amount of canopy leaf area and light environment within the canopy were also taken into account. Amount of leaf area was estimated by the leaf area growth of a single leaf. The change of light environment within the canopy during the growing season was estimated with a light penetration model and the leaf increment within the canopy. Canopy respiration and surplus production were calculated as seasonal and yearly values for the three years studied. Mean yearly estimates of canopy photosynthesis, canopy respiration and surplus production were 37, 13 and 23 tCO2 ha−1 year−1, respectively. Vertical trend, seasonal changes and yearly values of the estimates were analyzed in relation to environmental and stand factors.  相似文献   

12.
Abstract. The influence of leaf age, total leaf area and its dispersion in space on canopy photosynthesis were studied using microswards of red clover ( Trifolium pratense L.) which were established in the greenhouse. Two varieties, Renova (flowering) and Molstad (non-flowering), were sown in separate plastic boxes at densities of 225, 400 and 625 plants per m2.
Vertical distribution of photosynthetically active radiation (PAR), leaf area, leaf age and 14CO2-fixation were determined periodically. Net photosynthesis and dark respiration of canopies were measured. Maximum photosynthetic capacity of individual leaves was measured on plants taken from the intact canopy or from plants where shading of the growing leaves had been prevented.
Net photosynthetic rate of canopies increased linearly with leaf area index (LAI) up to an LAI of 3.5 and then declined at higher LAI, independent of variety and sowing density. Below the optimum LAI, net photosynthesis depended mainly on interception of PAR. Decrease in canopy photosynthesis above the optimum LAI was due to a higher proportion of old leaves with decreased photosynthetic capacity, and not to an increase in respiring plant parts. It is concluded that LAI and position of leaf age categories in the canopy are more important than vertical distribution of leaf area in determining canopy photosynthesis of red clover.  相似文献   

13.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

14.
Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22–29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5‐bisphosphate carboxylase/oxygenase)‐limited photosynthesis but also from electron transport‐limited photosynthesis; as a result, photosynthetic rates could be improved for both light‐saturated and light‐limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ‐plasm, especially the variation in parameters determining light‐limited photosynthesis.  相似文献   

15.
A canopy photosynthesis model was derived on the assumption that the light diminution within a canopy is caused by both leaves and non-photosynthetic organs. The light diminution by leaves and that by non-photosynthetic organs were taken into account separately in the Lambert-Beer equation of light extinction. The light flux density on the leaf surface at each depth was evaluated from the leaf's share of light. The light flux density on the leaf surface thus obtained was incorporated into the Monsi-Saeki model of canopy photosynthesis. The proposed model was applied for estimating gross canopy photosynthesis in a 19-year-oldLarix leptolepis plantation where 38% of the light diminution was due to non-photosynthetic organs. The daily canopy photosynthesis on one summer day calculated using the present model was about 22% less than that calculated by the conventional Monsi-Saeki model, in which light interception by non-photosynthetic organs is neglected. The degree of such reduction in canopy photosynthesis through shading by non-photosynthetic organs was assessed in relation to parameters affecting light extinction, leaf photosynthetic characteristics, and light regime above the canopy.  相似文献   

16.
Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.  相似文献   

17.
Acclimation of photosynthesis in canopies: models and limitations   总被引:8,自引:0,他引:8  
Olevi Kull 《Oecologia》2002,133(3):267-279
Within a time-scale of several days photosynthesis can acclimate to light by variation in the capacity for photosynthesis with depth in a canopy or by variation in the stoichiometry of photosynthetic components at each position within the canopy. The changes in leaf photosynthetic capacity are usually related to and expressed as changes in leaf nitrogen content. However, photosynthetic capacity and leaf nitrogen never match exactly the photon flux density (PFD) gradient within a canopy. As a result, photosynthetic light use efficiency, i.e. photosynthetic performance per incident PFD, increases considerably from the top of the canopy to the lower shaded part. Many of existing optimisation models fail to express the actual pattern of nitrogen or photosynthetic capacity distribution within a canopy. This failure occurs because these optimisation models do not consider that the quantitative aspect of photosynthesis acclimation is a whole plant phenomenon. Although turnover models, which describe the distribution of the photosynthetic apparatus within a canopy as a dynamic equilibrium between breakdown and regeneration of apparatus with respect to nitrogen availability, photosynthetic rate and export of carbohydrates, produce realistic results, these models require confirmation. The mechanism responsible for changes in the relative share of light-harvesting apparatus as acclimation to irradiance remains unknown. Ability of the photosynthetic apparatus to balance properly the light harvesting capacity with electron transport and biochemical capacities is limited. As a result of this fundamental limitation, photosynthetic light use efficiency always increases with increasing thickness of the photosynthetic apparatus.  相似文献   

18.
The hypothesis we propose is that during photosynthesis the balance between potentially detrimental and beneficial photochemically induced events can be tipped beneficially toward increased photosynthesis and toward increased crop yield. To test this hypothesis a procedure has been devised with the rice plant, Oryza sativa, that has resulted in increasing both canopy photosynthesis and rice grain yield. Two elite rice varieties selected independently in the contrasting environments of either South China or Texas, each with distinct photosynthetic traits, were crossed to produce a hybrid with an increased canopy photosynthesis and grain yield that is regularly 20 to 22% higher than the mid-yields of the parents. The photosynthetic and mechanisms which may contribute to these beneficial results in the hybrid rice are: a reduction of the midday depression of photosynthesis; a rapid development of the canopy for photosynthetic light interception and an increased canopy photosynthesis; increased amounts of carotenoids for the xanthophyll cycle; an increased protection against free radicals induced by paraquat treatment; a 6 to 12 day shorter plant reproductive life cycle; and a 8 to 10 day increase in the longevity of the flag leaf over the parents. While the hybrid rice has successfully integrated these and likely other unknown characteristics to increase both crop photosynthesis and grain yield, we propose that understanding the underlying beneficial photosynthetic mechanisms supporting these crop plant traits is worthy of thorough investigation and application in crop production.Dedicated to the memory of Professor D.I. Arnon who enriched and challenged the study of photosynthesis through a series of discoveries over 4 decades and via his force of personality.  相似文献   

19.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

20.

Background and Aims

Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis.

Methods

Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same.

Key Results

Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis.

Conclusions

At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号