首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the cloning and characterization of eight novel tetranucleotide microsatellite loci in the ornate chorus frog (Pseudacris ornata). We also screened 26 loci from GenBank that were isolated from other Pseudacris species and obtained consistent product from five of these dinucleotide loci. All loci are polymorphic. In our sample of 26 frogs from a natural population, polymorphism ranged from 1 to 22 alleles per locus with expected heterozygosities ranging from 0 to 0.958. These loci enable high-resolution studies of P. ornata. Moreover, cross-species amplification success suggests they will also be useful for other chorus frog species.  相似文献   

2.
3.
4.
Phylogeographic congruence among co-distributed taxa is regarded as an inherent inference to vicariance events. Nonetheless, incongruent patterns of contemporary lineage divergence among taxa indicated that species differ in their response to common past events. To investigate the role of past events, ecological traits and lineage diversification time in shaping the contemporary phylogeographic patterns, comparative analyses were conducted for Tibetan stone loaches in the Himalayas using three gene markers and two ecological traits (depth of caudal peduncle in their length and presence/absence of posterior chamber of the air bladder). By a thorough sampling in two flanks of the Himalayas, the authors detected that phylogenetic breaks were spatially discordant and divergences of populations were also temporally asynchronous in co-distributed loaches. Estimated divergence time using fossil-calibrated node dating indicated that the Tibetan stone loaches colonised into the south flank of the Himalayas until the Pleistocene. The demographic expansions were also disconcerted between populations in north and south flanks, or east and west Himalayas. Ongoing gene flows between populations in north and south sides implied that the Himalayas do not strictly impede dispersal of cold-adapted species. The results highlight that the quaternary climatic oscillation, in conjunction with ecological traits and lineage diversification time, shaped contemporary phylogenetic patterns of stone loaches in the Himalayas and provide new insights into the biodiversity and composition of species in the Himalayas and surrounding region.  相似文献   

5.
Darevskia praticola differs from the other species of the genus in having a large but disjunct distribution, covering the Balkan and the Caucasus regions. Furthermore, most Darevskia species occupy saxicolous habitats, whereas D. praticola inhabits meadows and forest environments. Here we determine the phylogeographic and phylogenetic relationships of Darevskia praticola sensu lato and evaluate the current, morphology-based taxonomy. We sequenced two mtDNA genes (Cyt-b and ND4) and two nuclear loci (MC1R and RELN) for samples collected across the species range. Because our sequences amplified with the Cyt-b primers appear to represent a nuclear pseudogene we excluded this marker from the final analysis. Our results support monophyly of D. praticola and show its division into three clades. The first divergence, dated to the Late Pliocene, is between the Balkans and the Caucasus. The Caucasus lineage is further subdivided in a western Greater Caucasus and a Transcaucasia clade, likely due to subsequent differentiation during the Pleistocene. Our findings do not support the current taxonomic arrangement within D. praticola. The main geographic divergence likely happened due to a vicariance event associated with Plio-Pleistocene climatic and vegetation oscillations.  相似文献   

6.
The newly described molossid bat, Chaerephon atsinanana Goodman et al., 2010, endemic to eastern Madagascar, shows notably high levels of phylogeographic and genetic structure compared with allopatric Chaerephon leucogaster Grandidier, 1869 from western Madagascar. Such highly significant structuring of haplotypes among altitudinally and latitudinally stratified population groups is contrary to the expected panmixia in strong flying bats. The null model of concordance in historical demographic patterns across these two Chaerephon species was not supported. Mismatch and Bayesian skyline analyses indicated ancient stable C. atsinanana populations of constant size during the last two major Pleistocene glacial periods, making retreat into and expansion from glacial refugia an unlikely explanation for such high levels of structure, in accordance with expectations for tropical bats. Analyses were consistent with post‐refugial population expansion in the less diverse and structured C. leucogaster during the end of the last Pleistocene glacial period. We hypothesise that the pronounced genetic structuring in C. atsinanana may result from female philopatry. Furthermore, differing demographic histories of the two species may have been shaped by differing climate or habitat preferences, consistent with evidence from MaxEnt ecological niche modelling, which shows differences in variables influencing the current predicted distributions. Fossil Quaternary pollen deposits further indicate greater stability in past climatic patterns in eastern versus western Madagascar. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 18–40.  相似文献   

7.
8.
Aim To infer the evolutionary history of Rana (Pelophylax) lessonae Camerano within its inferred Quaternary refugial range, and to shed light on the processes that have contributed to shaping the patterns of diversity within the southern European peninsulas. Location The Italian peninsula south of the Alps and Sicily. Methods Sequence analysis of a mitochondrial cytochrome b gene fragment in 149 individuals sampled from 25 localities. Results Three mitochondrial DNA (mtDNA) phylogroups were identified, distributed in northern Italy, the whole Italian peninsula south of the northern Apennines, and Sicily. Syntopy between the northern and peninsular lineages was observed close to the northern Apennines. The northern lineage was the most differentiated, showing a net sequence divergence of 4.8 ± 0.8% with respect to the two others, whereas the net divergence between peninsular and Sicilian lineages was 2.6 ± 0.6%. Analysis of molecular variance (amova ) revealed that 93% of the overall variation occurred between these three groups. Historical demographic statistics support a recent expansion for both the northern and peninsular groups, but not for the Sicilian group. In both northern and peninsular Italy, such an expansion was likely to have occurred during the last glaciation. Main conclusions Our results suggest that a number of microevolutionary processes were involved in shaping the present genetic structure of R. lessonae in Italy. These encompass allopatric differentiations in three distinct Pleistocene refugia, recent population expansions and secondary contacts. Our results, together with some previous work, support (1) the existence of a suture zone in the northern Apennines, and (2) the possibility of population expansions during the last glacial phase, when a vast widening of the lowland floodplain habitats followed sea‐level fall, particularly in northern Italy. When compared with previous analyses of allozyme data, it appears that the peninsular mtDNA lineage has recently replaced the Sicilian one in southern Calabria, and we suggest that this event occurred due to selective introgression. The implications of such an occurrence for the study of factors underlying the patterns of diversity within this southern European biodiversity hotspot are discussed. Taxonomic implications of the results are also evaluated.  相似文献   

9.
Aim  To perform a comparative analysis of distribution and genetic diversity in three closely related water strider species ( Gerris ) in order to shed light on a putative disjunct distribution in Gerris gillettei .
Location  Canada and the western United States.
Methods  Entomological collections from Canada and the United States were surveyed for records of Gerris pingreensis , G. gillettei and Gerris incognitus in order to establish the distribution range of each species. Using samples from present populations, mitochondrial and nuclear DNA sequence variation were used to construct minimum-spanning networks. Distribution patterns and genetic diversity were then compared among species.
Results  Our results showed that G. incognitus is a genetically distinct species with an unsuspected disjunct distribution. Gerris pingreensis and G. gillettei were found to share genetic polymorphism and they displayed spatial differences only in terms of haplotype distribution, suggesting that they form a single species.
Main conclusions  Distributional and molecular information uncover unusual distribution patterns and underline taxonomic uncertainty in a group of three closely related Gerris species. Vicariance and failure to recolonize following the last glaciation could explain the G. incognitus disjunction. Morphological and DNA-based species identifications suggest different post-glacial recolonization processes for G.   pingreensis and G. gillettei . The putative discontinuous range of G. gillettei may be explained as disjunct phenotypes of a single species.  相似文献   

10.
Phylogeography is often used to investigate the effects of glacial cycles on current genetic structure of various plant and animal species. This approach can also identify the number and location of glacial refugia as well as the recolonization routes from those refugia to the current locations. To identify the location of glacial refugia of the Yellow‐spotted mountain newt, Neurergus derjugini, we employed phylogeography patterns and genetic variability of this species by analyzing partial ND4 sequences (867 bp) of 67 specimens from 15 sampling localities from the whole species range in Iran and Iraq. Phylogenetic trees concordant with haplotype networks showed a clear genetic structure among populations as three groups corresponding to the populations in the north, center, and south. Evolutionary ages of clades north and south ranging from 0.15 to 0.17 Myr, while the oldest clade is the central clade, corresponding to 0.32 Myr. Bayesian skyline plots of population size change through time show a relatively slight increase until about 25 kyr (around the last glacial maximum) and a decline of population size about 2.5 kyr. The presence of geographically structured clades in north, center, and south sections of the species range signifies the disjunct populations that have emerged in three different refugium. This study illustrates the importance of the effect of previous glacial cycles in shaping the genetic structure of mountain species in the Zagros range. These areas are important in terms of long‐term species persistence and therefore valuable areas for conservation of biodiversity.  相似文献   

11.
12.
Since the late 1990s, molecular techniques have fuelled debate about the role of Pleistocene glacial cycles in structuring contemporary avian diversity in North America. The debate is still heated; however, there is widespread agreement that the Pleistocene glacial cycles forced the repeated contraction, fragmentation, and expansion of the North American biota. These demographic processes should leave genetic 'footprints' in modern descendants, suggesting that detailed population genetic studies of contemporary species provide the key to elucidating the impact of the late Quaternary (late Pleistocene-Holocene). We present an analysis of mitochondrial DNA (mtDNA) variation in the mountain chickadee (Poecile gambeli) in an attempt to examine the genetic evidence of the impact of the late Quaternary glacial cycles. Phylogenetic analyses reveal two strongly supported clades of P. gambeli: an Eastern Clade (Rocky Mountains and Great Basin) and a Western Clade (Sierra Nevada and Cascades). Post-glacial introgression is apparent between these two clades in the Mono Lake region of Central California. Within the Eastern Clade there is evidence of isolation-by-distance in the Rocky Mountain populations, and of limited gene flow into and around the Great Basin. Coalescent analysis of genetic variation in the Western Clade indicates that northern (Sierra Nevada/Cascades) and southern (Transverse/Peninsular Ranges) populations have been isolated and evolving independently for nearly 60,000 years.  相似文献   

13.
Abstract We examined mitochondrial DNA (mtDNA) variation in pipevine swallowtail butterflies ( Battus philenor ) from throughout its extant range to provide a historical, phylogeographical context for ecological studies of the disjunct population in California. We evaluate current hypotheses regarding host plant use, behavior, and mimetic relationships of B. philenor populations and generate alternative hypotheses. Compared to populations throughout the rest of the species' range, California populations are ecologically distinct in that they lack mimics, lay significantly larger clutches of eggs, and exclusively use a unique, endemic larval host plant. Analysis of molecular variance, tests of population differentiation, and nested clade analysis of mtDNA variation indicate that, despite low levels of population genetic structure across the species' range, there is evidence of recent range expansion from presumed Pleistocene refuge(s) in southeastern North America. Colonization of California appears to have been a recent event. This phylogeographic investigation also suggests that the evolution of life-history adaptations to a novel larval host has occurred rapidly in California and the lack of mimics in California may be attributable to the recency of colonization.  相似文献   

14.
15.
16.
17.
18.
The uplift of the Tibetan Plateau caused significant ecogeographical changes that had a major impact on the exchange and isolation of regional fauna and flora. Furthermore, Pleistocene glacial oscillations were linked to temporal large‐scale landmass and drainage system reconfigurations near the Hengduan Mountain Region and might have facilitated speciation and promoted biodiversity in southwestern China. However, strong biotic evidence supporting this role is lacking. Here, we use the Euchiloglanis fish species complex as a model to demonstrate the compound effects of the Tibetan Plateau uplift and Pleistocene glacial oscillations on species formation in this region. The genetic structure and geographical differentiation of the Euchiloglanis complex in four river systems within the Hengduan Mountain Region were deduced using the cytochrome b (cyt b) gene and 10 microsatellite loci from 360 to 192 individuals, respectively. The results indicated that the populations were divided into four independently evolving lineages, in which the populations from the Qingyi River and Jinsha River formed two sub‐lineages. Phylogenetic relationships were structured by geographical isolation, especially near drainage systems. Divergence time estimation analyses showed that the Euchiloglanis complex diverged from its sister clade Pareuchiloglanis sinensis at around 1.3 Million years ago (Ma). Within the Euchiloglanis complex, the divergence time between the Dadu–Yalong and Jinsha–Qingyi River populations occurred at 1.0 Ma. This divergence time was in concordance with recent geological events, including the Kun‐Huang Movement (1.2–0.6 Ma) and the lag time (<2.0 Ma) of river incision in the Hengduan Mountain Region. Population expansion signals were detected from mismatched distribution analyses, and the expansion times were concurrent with Pleistocene glacier fluctuations. Therefore, current phylogeographic patterns of the Euchiloglanis fish complex in the Hengduan Mountain Region were influenced by the uplift event of the Tibetan Plateau and were subsequently altered by paleo‐river transitions during the late Pleistocene glacial oscillations.  相似文献   

19.
20.
X. Hua    W. Wang    W. Yin    Q. He    B. Jin    J. Li    J. Chen    C. Fu 《Journal of fish biology》2009,75(2):354-367
This study extended the geographic coverage of a previous study to explore population genetic structure and demographic history in the Ariake icefish Salanx ariakensis from three populations of continental coastlines and one island population in the north-western Pacific based on a partial sequence of the mitochondrial cytochrome b gene. The S. ariakensis showed high genetic diversity and strong genetic structure. Phylogenetic analysis showed a shallow gene tree with no clear phylogeographical structure. Contiguous range expansion and restricted gene flow were inferred to be main population events by nested-clade analysis. Significant genetic differentiations between populations could be attributable to negligible gene flow by coalescent analysis. High nucleotide diversity of each population was due to geographic mixing of heterogenous haplotypes during lowering sea levels of the Pleistocene. These findings indicate that cycles of geographic isolation and secondary contact happened in the Pleistocene glacial–interglacial cycles shaping genetic structure and population demography of S. ariakensis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号