首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Extensins, hydroxyproline‐rich repetitive glycoproteins with Ser–Hyp4 motifs, are structural proteins in plant cell walls. The leucine‐rich repeat extensin 1 (LRX1) of Arabidopsis thaliana is an extracellular protein with both a leucine‐rich repeat and an extensin domain, and has been demonstrated to be important for cell‐wall formation in root hairs. lrx1 mutants develop defective cell walls, resulting in a strong root hair phenotype. The extensin domain is essential for protein function and is thought to confer insolubilization of LRX1 in the cell wall. Here, in vivo characterization of the LRX1 extensin domain is described. First, a series of LRX1 extensin deletion constructs was produced that led to identification of a much shorter, functional extensin domain. Tyr residues can induce intra‐ and inter‐molecular cross‐links in extensins, and substitution of Tyr in the extensin domain by Phe led to reduced activity of the corresponding LRX1 protein. An additional function of Tyr (or Phe) is provided by the aromatic nature of the side chain. This suggests that these residues might be involved in hydrophobic stacking, possibly as a mechanism of protein assembly. Finally, modified LRX1 proteins lacking Tyr in the extensin domain are still insolubilized in the cell wall, indicating strong interactions of extensins within the cell wall in addition to the well‐described Tyr cross‐links.  相似文献   

5.
6.
7.
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2AT. PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2‐GFP localizes to the cell wall, and PGX2AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild‐type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1AT plants, PGX2AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes.  相似文献   

8.
Arabidopsis thaliana is gradually gaining significance as a model for wood and fiber formation.revolute/ifl1 is an important mutant in this respect. To better characterize the fiber system of therevolute/ifl1 mutant, we grew plants of two alleles (rev-9 in Israel andrev-1 in the USA) and examined the fiber system of the inflorescence stems using both brightfield and polarized light. Microscopic examination of sections of plants belonging to the two different alleles clearly revealed that, contrary to previous views, in 18 (13 in Israel and 5 in Ohio) out of 30 stems (20 in Israel and 10 in Ohio) the mutant produced the primary wavy fiber system of the inflorescence stems. Our findings are further supported by the fact that fibers are seen in the figures published in other studies of the mutant even when it was stated that there were no fibers. The impression of a total lack of the wavy band of fibers is in many cases just a result of poorly lignified secondary walls. This specific gene that reduces lignification in fibers is of great significance for biotechnological developments for the paper industry and thus for the global economy and ecology. We propose thatrevoluta, the first name given to this mutant (Talbert and others 1995), is more appropriate thanifl1. Online publication: 7 April 2005  相似文献   

9.
10.
11.
12.
Gao M  Showalter AM 《Planta》2000,210(6):865-874
 Arabinogalactan-proteins (AGPs) are highly glycosylated cell surface proteins that are thought to function in plant growth and development. The developmentally regulated expression of LeAGP-1, a novel and major AGP in tomato, was examined in different organs and tissues of tomato (Lycopersicon esculentum Mill. cv. UC82B) plants with an anti-peptide antibody (i.e. the PAP antibody) directed specifically against the lysine-rich subdomain of the LeAGP-1 core protein. During cell differentiation in tomato plants, LeAGP-1 was associated with cell wall thickening and lignification of particular cell types. Specifically, LeAGP-1 was detected in secondary wall thickenings of maturing metaxylem and secondary xylem tracheary elements in roots and stems, and in thickened cell walls of phloem sieve elements. However, LeAGP-1 was also present in thin-walled, cortical parenchyma cells of seedling roots as well as thick-walled collenchyma cells in young stems, both of which are not lignified. Based on these observed patterns, possible roles for LeAGP-1 in plant growth and development are discussed. Received: 17 August 1999 / Accepted: 7 October 1999  相似文献   

13.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

14.
An insertion in the promoter of the Arabidopsis thaliana QUA1 gene (qua1-1 allele) leads to a dwarf plant phenotype and a reduction in cell adhesion, particularly between epidermal cells in seedlings and young leaves. This coincides with a reduction in the level of homogalacturonan epitopes and the amount of GalA in isolated cell walls (Bouton et al., Plant Cell 14: 2577 2002). The present study was undertaken in order to investigate further the link between QUA1 and cell wall biosynthesis. We have used rapidly elongating inflorescence stems to compare cell wall biosynthesis in wild type and qua1-1 mutant tissue. Relative to the wild type, homogalacturonan α-1-4-D-galacturonosyltransferase activity was consistently reduced in qua1-1 stems (by about 23% in microsomal and 33% in detergent-solubilized membrane preparations). Activities of β-1-4-D-xylan synthase, β-1-4-D-galactan synthase and β-glucan synthase II activities were also measured in microsomal membranes. Of these, only β-1-4-D-xylan synthase was affected, and was reduced by about 40% in qua1-1 stems relative to wild type. The mutant phenotype was apparent in inflorescence stems, and was investigated in detail using microscopy and cell wall composition analyses. Using in situ PCR techniques, QUA1 mRNA was localized to discrete cells of the vascular tissue and subepidermal layers. In mutant stems, the organization of these tissues was disrupted and there was a modest reduction in homogalacturonan (JIM5) epitopes. This study demonstrates a specific role for QUA1 in the development of vascular tissue in rapidly elongating inflorescence stems and supports a role of QUA1 in pectin and hemicellulose cell wall synthesis through affects on α-1,4-D-galacturonosyltransferase and β-1,4-D-xylan synthase activities.  相似文献   

15.
Cell wall proteome analysis of Arabidopsis thaliana mature stems   总被引:1,自引:0,他引:1       下载免费PDF全文
Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido‐reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido‐reductases.  相似文献   

16.
17.
Jong Sik Kim  Geoffrey Daniel 《Planta》2012,236(5):1367-1379
Microdistribution of mannans in Arabidopsis stem was examined using immunolocalization with mannan-specific monoclonal antibodies (LM21 and LM22). Mannan labeling in secondary xylem cells (except for protoxylem vessels) was initially detected in the cell wall during S2 formation and increased gradually during development. Labeling in metaxylem vessels (vessels) was detected earlier than that in xylary fibers (fibers), but was much weaker than fibers. The S1 layer of vessels and fibers showed much less labeling than the S2 layer. Some strong labeling was also detected in pit membranes of vessel pits. Interfascicular fibers (If-fibers) showed more heterogeneous labeling patterns than fibers by LM21. Unlike fibers, If-fibers also revealed some strong labeling in the cell corner of the S1 layer, indicating different mannan labeling patterns between If-fibers and fibers. Interestingly, protoxylem vessels (proto-vessels) showed strong labeling at the early stage of secondary xylem formation with more intense labeling in the outer- than inner cell wall even though fibers and vessels showed no or very low labeling at this stage. Labeling intensity of proto-vessels was also much stronger than vessels and stronger or slightly weaker than fibers by LM21 and LM22, respectively. Using pectinase and mild alkali treatment, the presence of mannans in parenchymatous cells was also confirmed. Together our observations indicate that there are temporal and spatial variations in mannan labeling between cell types in the secondary xylem of Arabidopsis stems. Some similar features of mannan labeling between Arabidopsis and poplar are also discussed.  相似文献   

18.
Intracellular pH (pHi) is a crucial parameter in cellular physiology but its mechanisms of homeostasis are only partially understood. To uncover novel roles and participants of the pHi regulatory system, we have screened an Arabidopsis mutant collection for resistance of seed germination to intracellular acidification induced by weak organic acids (acetic, propionic, sorbic). The phenotypes of one identified mutant, weak acid‐tolerant 1‐1D (wat1‐1D) are due to the expression of a truncated form of AP‐3 β‐adaptin (encoded by the PAT2 gene) that behaves as a as dominant‐negative. During acetic acid treatment the root epidermal cells of the mutant maintain a higher pHi and a more depolarized plasma membrane electrical potential than wild‐type cells. Additional phenotypes of wat1‐1D roots include increased rates of acetate efflux, K+ uptake and H+ efflux, the latter reflecting the in vivo activity of the plasma membrane H+‐ATPase. The in vitro activity of the enzyme was not increased but, as the H+‐ATPase is electrogenic, the increased ion permeability would allow a higher rate of H+ efflux. The AP‐3 adaptor complex is involved in traffic from Golgi to vacuoles but its function in plants is not much known. The phenotypes of the wat1‐1D mutant can be explained if loss of function of the AP‐3 β‐adaptin causes activation of channels or transporters for organic anions (acetate) and for K+ at the plasma membrane, perhaps through miss‐localization of tonoplast proteins. This suggests a role of this adaptin in trafficking of ion channels or transporters to the tonoplast.  相似文献   

19.
Transgenic Arabidopsis thaliana plants expressing cell antisense exhibit reduced levels of cell mRNA and protein compared with wild-type plants. The former display significant alterations in their phenotype. cell antisense plants have shorter stems and roots and are mechanically weaker than their wild-type counterparts. In cell antisense plants, the cell wall structure is markedly disrupted: both fluorescent confocal microscopy and scanning electron microscopy revealed `wrinkled' cell walls, thus indicating that CEL1 plays an important role in cell wall relaxation during cell growth and expansion. In cell antisense plants, the number of xylem elements per bundle is smaller than in the wild-type. In addition, both xylem elements and interfascicular fibers are significantly less lignified in the former. It is suggested that in A. thaliana, abnormal cell wall deposition affected by CEL1 depletion is associated not only with cell growth, but also with the differentiation process in the vascular and supporting tissues.Equal contributors  相似文献   

20.
N‐linked glycosylation is an essential protein modification that helps protein folding, trafficking and translocation in eukaryotic systems. The initial process for N‐linked glycosylation shares a common pathway with assembly of a dolichol‐linked core oligosaccharide. Here we characterize a new Arabidopsis thaliana mutant lew3 (leaf wilting 3), which has a defect in an α‐1,2‐mannosyltransferase, a homolog of ALG11 in yeast, that transfers mannose to the dolichol‐linked core oligosaccharide in the last two steps on the cytosolic face of the ER in N‐glycan precursor synthesis. LEW3 is localized to the ER membrane and expressed throughout the plant. Mutation of LEW3 caused low‐level accumulation of Man3GlcNAc2 and Man4GlcNAc2 glycans, structures that are seldom detected in wild‐type plants. In addition, the lew3 mutant has low levels of normal high‐mannose‐type glycans, but increased levels of complex‐type glycans. The lew3 mutant showed abnormal developmental phenotypes, reduced fertility, impaired cellulose synthesis, abnormal primary cell walls, and xylem collapse due to disturbance of the secondary cell walls. lew3 mutants were more sensitive to osmotic stress and abscisic acid (ABA) treatment. Protein N‐glycosylation was reduced and the unfolded protein response was more activated by osmotic stress and ABA treatment in the lew3 mutant than in the wild‐type. These results demonstrate that protein N‐glycosylation plays crucial roles in plant development and the response to abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号