首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fires in arid environments are rare, so are not deemed as important as in mesic savannas. We investigated mortality and resprouting amongst camelthorn (Acacia erioloba) after two fires (at Vaalbos National Park and Susanna farm) in semi‐arid savanna near Kimberley, South Africa. Resprouting response 18 months after a fire was the greatest amongst <6.5 m high trees; extent of foliage damage by fire and bark thickness were the next best predictors of resprouting vigour amongst that size class. The largest size class (8–12 m height) of A. erioloba suffered the greatest mortality rates (40% and 83% at Vaalbos and Susanna respectively), with damage either severe or minor. We hypothesize that large tree mortality rates are partly attributable to well‐developed assemblages of flammable subcanopy plants producing a bonfire beneath trees. These mortality rates indicate that fire reduces both tree abundance and relative representation of large trees, and although able to resprout, A. erioloba is fire‐sensitive, which may explain its restriction to Kalahari sands where rainfall is less than 900 mm year?1. Therefore, although relatively infrequent, fires shape Kalahari woodland structure, particularly as A. erioloba is long lived and slow growing. Large trees have been shown to be important to biodiversity in the southern Kalahari, so frequent fires could impact biodiversity.  相似文献   

2.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

3.
Questions: The Cross Timbers are a mosaic of savannas, grasslands and upland forests, occupying a significant portion of south‐central North America. Our questions here were (1) how does a severe tornado affect the two most dominant tree species of the area Quercus marilandica and Q. stellata with respect to damage and mortality; (2) how do such patterns vary as a function of tree size? What are the implications of disturbance for codominance in species‐poor systems? Location: The Cross Timbers in Oklahoma, USA. Methods: We established a 14.48‐ha permanent plot following a severe tornado in 2003. We identified, numbered and tagged each tree and recorded its diameter at breast height (DBH), spatial coordinates, status (dead or alive), and damage type. We examined (1) relative abundance before and after the tornado; (2) differences in damage and mortality, and (3) the influence of tree diameter on the probability of damage and mortality for each species. Results: Differences in species identity and tree characteristics were significantly related to tree mortality following the tornado, after accounting for spatial locations. The odds of mortality were 12.0 times greater for Q. marilandica than for Q. stellata. Such greater vulnerability of Q. marilandica versus Q. stellata was also reflected in changes in density and basal area. Tree diameter clearly influenced the damage and mortality pattern in Q. stellata; larger trees sustained more damage and mortality. However, Q. marilandica did not exhibit size‐dependent mortality. Conclusion: The tornado affected the two dominant species differently. The intra‐ and inter‐specific differences in windstorm susceptibility may allow coexistence of the two species and are potentially important in the dynamics of the Cross Timbers. Species more damaged might finally benefit from the wind disturbance due to their resprouting ability.  相似文献   

4.
It is well established that transpiration and photosynthetic rates generally increase in resprouting shoots after fire in chaparral shrublands. By contrast, little is known about how plant hydraulic function varies during this same recovery period. We hypothesized that vascular traits, both functional and structural, would also shift in order to support this heightened level of gas exchange and growth. We examined stem xylem‐specific hydraulic conductivity (Ks) and resistance to cavitation (P50) for eight chaparral shrub species as well as several potential xylem structural determinants of hydraulic function and compared established unburned plants and co‐occurring post‐fire resprouting plants. Unburned plants were generally more resistant to cavitation than resprouting plants, but the two groups did not differ in Ks. Resprouting plants had altered vessel structure compared with unburned plants, with resprouting plants having both wider diameter vessels and higher inter‐vessel pit density. For biomechanics, unburned plants had both stronger and denser stem xylem tissue than resprouting plants. Shifts in hydraulic structure and function resulted in resprouting plants being more vulnerable to dehydration. The interaction between time since disturbance (i.e. resprouting versus established stands) and drought may complicate attempts to predict mortality risk of resprouting plants.  相似文献   

5.
Disturbances can alter persistence trajectories of restored ecosystems. Resprouting is a common response of plants to disturbances such as fire or herbivory. Therefore, understanding a plant's resprouting response can inform successful restoration. We investigated patterns and drivers of resprouting following fire in fire-prone Banksia woodlands restored after sand mining in the Mediterranean-climate region of Western Australia. We applied experimental fire to samples of nine species with different resprouting types (rhizome, root crown, root sucker and lignotuber) across a 4- to 27-year-old restoration chronosequence. We investigated the influence of pre-fire plant size, restoration age and soil conditions on resprouting success, defined by: (i) the probability of resprouting (measured ~5 months after fire), (ii) the probability of surviving the first summer and, (iii) vigour (both measured ~12 months post-fire). We found that the probability of initial resprouting was high across most species, but summer survival was lower but comparable to that in other post-mining restored ecosystems following fire. Generally, pre-fire plant size did not influence probability of resprouting, while size and soil conditions were important for two species survival. Pre-fire plant size was a significant predictor of vigour for all species with soil conditions influencing four species. Restoration age significantly influenced survival of three species. However, as our models explained low amounts of variation in probabilities of resprouting and survival (R2 = <0.11), other factors influencing resprouting success remain unidentified. Resprouting response to fire disturbance in restored Banksia woodlands are species and resprouter type specific, with plant size and soil conditions potentially more informative for understanding responses to disturbances than restoration age alone.  相似文献   

6.
Question: The role edges play in mediating the effects of disturbance is unclear. Bayhead tree islands, which experience above‐ and belowground fire, contain trees that recover from disturbance by seed (Pinus elliottii var. densa) and by sprouting (Gordonia lasianthus). How does distance‐to‐edge affect survival and post‐fire response of trees with these contrasting life‐history strategies? Location: Two bayhead tree islands at Archbold Biological Station, central Florida, North America. Methods: Stem diameter, depth of peat smoldering, char height, resprouting status, and location were recorded for all Pinus and Gordonia stems ≥8 cm. Distance to the edge of the tree island was quantified using GIS. Results: The focal species showed contrasting patterns of survival across the edge‐to‐interior gradient that reflected gradients of fire severity. Survival of Gordonia was lowest in the bayhead interior where peat smolder was deepest. Conversely, survival of Pinus was lowest near the edges where char heights were greatest. The distinct types of Gordonia resprouting (crown versus basal) also showed spatially contrasting patterns. Basal resprouting dominated near the edges and was positively influenced by char height, while crown resprouting was nearly constant across the edge‐to‐interior gradient and was negatively influenced by char height. Conclusions: The spatial patterns of tree survival and resprouting observed are likely due to gradients in intensity of peat smoldering and aboveground burning, coupled with differential susceptibility to these two types of fire. Despite the rarity of fire in wetland tree islands (compared to uplands) it may play an important role in structuring the spatial distribution of trees.  相似文献   

7.
Summary   Resprouting is a common regenerative strategy in plant taxa that occurs in fire and drought-prone environments. When plants are forced to use bud resources in quick succession as a result of repeated disturbances, recovery vigour may be diminished. The loss of bud resources through the combined effect of successive fire and drought is likely to be more damaging for plant survival and persistence than one or other disturbance on its own. In this study, we examine the resprouting response of seven trees and two shrubs after fire and drought in woodland communities in the New England and Bioregion of New South Wales. We also investigate whether there is a cumulative impact on plant vitality as a result of the combined disturbances of fire followed by drought. Preliminary results suggest that resprouting after drought occurs from buds located on the same morphological parts of tree and shrub species as after fire, although the response reflects the intensity of impact. Mortality in nine species affected by drought was similar to that in plants affected by both fire and drought. Since a drought between successive fires has the potential to deplete bud resources and debilitate plants, drought should be taken into account when determining fire regimes, and a severe drought between two fires should be considered in a similar way to an unplanned burn. Failure to do so may lead to reduced vigour and excessive mortality in resprouting species after planned fire.  相似文献   

8.
9.
The sprouting response types of 1,151 cork oak (Quercus suber) trees one and half years after a wildfire in southern Portugal were characterised. It was hypothesised that different response types should occur according to the following conceptual model: an increased level of damage (fire severity) on a sprouting tree that suffered a crown fire was expected to be reflected in a sequence of four alternative events, namely (a) resprouting exclusively from crown, (b) simultaneous resprouting from crown and base, (c) resprouting exclusively from base and (d) plant death. To assess whether the level of expected damage was influenced by the level of protection from disturbance, we explored the relationships between response types and tree size, bark thickness and cork stripping, using an information-theoretic approach. The more common response type was crown resprouting (68.8% of the trees), followed by plant death (15.8%), simultaneous resprouting from crown and base (10.1%) and basal resprouting (5.3%). In agreement with the conceptual model, trees which probably suffered a higher level of damage by fire (larger trees with thinner bark; exploited for cork) died or resprouted exclusively from base. On the other hand, trees that were well protected (smaller trees with thicker bark not exploited for cork) were able to rebuild their canopy through crown resprouting. Simultaneous resprouting from the crown and base was determined mainly by tree size, and it was more common in smaller trees.  相似文献   

10.
In southern California, wildfire is a ubiquitous agent shaping plant communities. Although fire impacts have been widely studied in chaparral-covered uplands, few data are available regarding fire and riparian vegetation. This study provides an example of the impact of a severe fire on riparian habitat. Plant species found in southern California gallery forests are typically adapted to maintaining populations following flood disturbances; we seek to determine whether structural and compositional changes following fire here demonstrate a similar quasi-equilibrium response. We sampled 65 quadrats on 11 transects along two streams in the Los Padres National Forest to characterize tree species size–class distributions before and after the 2002 Wolf Fire. We tested whether species exhibited differential patterns of survivorship and regeneration following the fire, and also tested for spatial variability in mortality within the floodplain. Alnus rhombifolia dominated the pre-fire forest, but experienced severe mortality in the fire and showed very limited resprouting after 3 years. Other prominent taxa (Populus, Salix, Quercus spp.) also lost considerable standing basal area, but had substantially greater rates of resprouting, resulting in a dramatically altered post-fire vegetation composition and structure. Fire impacts did not vary with landform position, leading to a distinctive homogenizing disturbance that contrasts with the spatially zoned and relatively stabilizing compositional influence that flood events have in this same riparian setting.  相似文献   

11.
Abstract The ability to withstand disturbance (resistance) and the ability to recover biomass following disturbance (resilience) were investigated in Australian wet tropical rainforest tree species. These two attributes are expected to be negatively correlated, because investment of biomass in structural support (conferring resistance) results in trees exhibiting high wood densities and slow growth rates, and vice versa. We examined species’ responses to disturbance caused by a severe tropical cyclone to test this hypothesized trade‐off. We assessed cyclone damage in six species in three Mabi rainforest fragments on the Atherton Tablelands. Species differed in the proportion of individuals within four damage categories (minor damage, severe branch damage, snapped, uprooted). Resistance was positively related to wood density. We found a positive correlation between the proportion of trees experiencing minor damage only and wood density, supporting the hypothesized association between resistance and mechanical strength. Among the subset of trees in which stems snapped, rates of resprouting differed between species and were highest in low wood density species and lowest in species with highest wood density. Resilience, characterized as the ability to recover biomass following disturbance and estimated as growth rate standardized for stem diameter at breast height (g day?1 · mm?1), was negatively related to wood density. Thus, species with low wood densities were more likely to suffer stem and branch damage owing to cyclonic winds, but also demonstrated highest resprouting and fastest responses in terms of redeveloping biomass in the 8 months following disturbance. This suggests that a species’ position along the resistance–resilience spectrum can be predicted by mean wood density, which may allow managers to predict species’ responses to future cyclones. Our findings also provide mechanistic evidence for the ‘direct regeneration’ model of post‐cyclone succession, where response is characterized by resprouting and species composition is unchanged.  相似文献   

12.
Summary Resprouting is the main regeneration mechanism after fire in Mediterranean-type ecosystems. Herbivores play an important role in controlling postfire seedling establishment, but their influence on regeneration by resprouting is less well known. To study the effects of fire intensity on resprouting of Adenostoma fasciculatum in southern California chaparral, and its interaction with herbivory, we conducted an experimental burn at three levels of fire intensity. We found that increasing fire intensity increased plant mortality, reduced the number of resprouts per plant, and delayed the time of resprouting. Herbivory increased with fire intensity, and was related to the time of resprouting. Plants resprouting later in the season and out of synchrony with the main flush were attacked more readily by herbivores. Post-resprouting mortality also increased with fire intensity and was significantly associated with herbivory in the higher fire intensity plots. Fire intensity effects on chaparral regeneration by resprouting may be farreaching through effects on the population structure, resprout production, and growth of Adenostoma fasciculatum.  相似文献   

13.
We investigated the fire resistance conferred by bark of seven common tree species in north Australian tropical savannas. We estimated bark thermal conductance and examined the relative importance of bark thickness, density and moisture content for protecting the cambium from lethal fire temperatures. Eucalypt and non-eucalypt species were contrasted, including the fire-sensitive conifer Callitris intratropica. Cambial temperature responses to bark surface heating were measured using a modified wick-fire technique, which simulated a heat pulse comparable to surface fires of moderate intensity. Bark thickness was a better predictor of resistance to cambial injury from fires than either bark moisture or density, accounting for 68% of the deviance in maximum temperature of the cambium. The duration of heating required to kill the cambium of a tree (τc) was directly proportional to bark thickness squared. Although species did not differ significantly in their bark thermal conductance (k), the thinner barked eucalypts nevertheless achieved similar or only slightly lower levels of fire resistance than much thicker barked non-eucalypts. Bark thickness alone cannot account for the latter and we suggest that lower bark moisture content among the eucalypts also contributes to their apparent fire resistance. Unique eucalypt meristem anatomy and epicormic structures, combined with their bark traits, probably facilitate resprouting after fire and ensure the dominance of eucalypts in fire-prone savannas. This study emphasises the need to take into account both the thermal properties of bark and the mechanism of bud protection in characterising the resprouting ability of savanna trees.  相似文献   

14.
The ecological differences between ‘shrubs’ and ‘trees’ are surprisingly poorly understood and clear ecological definitions of these two constructs do not exist. It is not clear whether a shrub is simply a small tree or whether shrubs represent a distinct life‐history strategy. This question is of special interest in African savannas, where shrubs and trees often co‐dominate, but are often treated uniformly as ‘woody plants’ even though the tree to shrub ratio is an important determinant of ecosystem functioning. In this study we use data from a long‐term fire experiment, together with a trait‐based approach to test (i) if woody species usually classified as shrubs or trees in African savanna differ in key traits related to disturbance and resource use; and (ii) if these differences justify the interpretation of the two growth forms as distinct life‐history strategies. We measured for 22 of the most common woody plant species of a South African savanna 27 plant traits related to plant architecture, life‐history, leaf characteristics, photosynthesis and resprouting capacity. Furthermore we evaluated their performance during a long‐term fire experiment. We found that woody plants authors call (i) shrubs; (ii) shrubs sometimes small trees; and (3) trees responded differently to long‐term fire treatments. We additionally found significant differences in architecture, diameter‐height‐allometry, foliage density, resprouting vigour after fire, minimum fruiting height and foliar δ13C between these three woody plant types. We interpret these findings as evidence for at least two different life‐history‐strategies: an avoidance/adaptation strategy for shrubs (early reproduction + adaptation to minor disturbance) and an escape strategy for trees (promoted investment in height growth + delayed reproduction).  相似文献   

15.
Abstract Fire is often used as a management tool in fire‐prone communities to reduce fuel loads with the intention of reducing the severity and extent of unplanned fires, often resulting in the increased occurrence of fire in the dry sclerophyll vegetation of Australia. This study examined the effects of fire frequency (length of the inter‐fire interval) on the reproductive output of seven plant species in the Proteaceae, including obligate seeding shrubs (Hakea teretifolia, Petrophile pulchella), resprouting shrubs (Banksia spinulosa, Isopogon anemonifolius, Lambertia formosa) and resprouting trees (Banksia serrata, Xylomelum pyriforme). Reproductive output (measured as either number of confructescences or follicles) and relative size were estimated for 100 individuals at each of five sample sites, covering a range of past fire frequencies over 26 years including repeated short inter‐fire intervals. Patterns in reproductive output (after standardizing for size) were related to the life‐history attributes of the species. In areas that had experienced short inter‐fire intervals, obligate seeders had greater reproductive output compared with longer intervals, and the reproductive output of resprouting shrubs was less. Fire frequency did not affect reproductive output of the resprouting trees. The decreased reproductive output of the resprouting shrubs could be due to the allocation of resources to regrowth following fire rather than to reproduction. It is less clear what process resulted in the increased reproductive output of obligate seeders in high fire frequency areas, but it could be due to the most recent fires being more patchy in the areas experiencing shorter inter‐fire intervals, or it may have resulted from the selection for early reproduction in the high fire frequency areas. These results highlight the need to take into account past fire frequency at a site, in addition to time since the last fire, when planning prescribed fires.  相似文献   

16.
Aim Fire is a key disturbance in Mediterranean‐type climates. It has effects on plant community structure and composition and on the evolution of different groups of the flora. This study aimed to quantify changes in demography and vegetative regeneration caused by fire in key species in Mediterranean vegetation and to examine the hypothesis of convergence in characteristics of species in relation to fire by comparing the occurrence of bioecological groups of plants in the Mediterranean basin with groups of plants in other areas of Mediterranean‐type climate. Methods Changes in the demography and species composition after fire were studied in a plant community developed from a pinewood (Pinus halapensis Miller plantation) in north‐western Sardinia. The demography of the three main species dominating the community after fire, Cistus monspeliensis L., Pistacia lentiscus L. and Chamaerops humilis L., was quantified by quadrat measurements in areas of the plantation which had never been burnt and in different parts 1 and 8 years after fire. Vegetative regeneration of resprouting species was also quantified. From the results of the survey and examination of published material, comparison was made between bioecological groups of species in different regions with Mediterranean‐type climate to assess the similarities and differences in the biogeographic distribution of what can be broadly considered fire‐related functional groups of plants. Results Seeder and sprouter species showed contrasting population responses to fire in an area planted to pines over 50 years ago but subsequently in part subjected to fire. Mean species richness at a 25 m2 scale decreased by c. 28% over 8 years after fire. C. monspeliensis in the unburnt pinewood was sparse and sporadic but recruitment after fire was prolific and produced plant densities similar to those of similar seeder species in other Mediterranean Basin areas and in Californian chaparral. However density was very variable between burnt areas of different ages. In particular, seedling recruitment was much lower under the canopies of P. lentiscus than away from the canopy. Sprouter species (P. lentiscus and C. humilis) had recruited into the pinewood over time since planting of the pines but did not recruit after fire. Above‐ground parts of plants were killed by fire and resprout stem density per plant increased initially but later decreased slightly due to self thinning of stems on each plant. Main conclusions Plant demographic and floristic changes after fire in the Sardinian pinewood were similar to those reported for other Mediterranean plant communities. Resprouting species only recovered by vegetative means and, in contrast to seeder species, underwent thinning of stems within, rather than between, plants, so plant density did not change after fire in resprouting species. The Tertiary relic, strongly resprouting, animal‐dispersed group of species in the Mediterranean Basin has a homologous group in the North American mediterraneoid flora but not in the Southern Hemisphere. In contrast, the general group of resprouting species which recruit after and/or between fires in the Southern Hemisphere mediterraneoid areas corresponds to only a small group of taxa in the Mediterranean basin. The bioecological group of seeder species, which are killed by and establish prolifically after fire, are represented in both Northern and Southern Hemisphere Mediterranean‐type heathlands but are much more species rich in the south.  相似文献   

17.
Abstract In 2002, fire burnt areas of Mesophyll‐ and Notophyll Vine Forest in the Smithfield Conservation Park near Cairns, Australia. We assessed the ability of rainforest plant species to persist through fire via resprouting. Natural rates of mortality and resprouting in unburnt areas were assessed for all saplings (stems < 2 m) via 13, 2 × 50 m belt transects, and compared to estimates of mortality and resprouting in 26 transects in burnt areas. We also tested the resprouting ability per‐individual stem of each species against all other stems with which it co‐occurred. Totals of 1242 stems (138 species) were sampled in burnt transects and 503 stems (95 species) in unburnt transects (total number of unique species = 169). There was no difference in the number of stems existing prior to the fire in burnt and unburnt areas when expressed on a per‐sample area basis. Resprouting from basal shoots and root suckers was significantly greater in burnt than in unburnt areas, but rates of stem sprouting were not different. In burnt areas 72 species were tested for resprouting ability and most (65/72) resprouted at similar rates. All species analysed contained individuals that resprouted. The resprouting response of five species was significantly lower, and in two species was significantly higher. For these species especially, fire may act as a mechanism altering relative abundances. The fire coincided with an extreme El Niño event. Current predictions indicate El Niño conditions may become increasingly common, suggesting fire events within rainforest could become more frequent. Resprouting as a general phenomenon of rainforest species, and differential resprouting ability between species should therefore be an important consideration in assessing the potential path of vegetation change in rainforests after fire.  相似文献   

18.
How do tree species regenerate and which ecological conditions are required after forest fire in the Insubric region of the Alps? Are indigenous stand-forming tree species resistant over the invasion of alien plant species after such a disturbance? We addressed these questions in a case study in the Swiss canton of Ticino. In April 2006, a surface fire with severe intensity burnt a forest area of 55 ha on a south-facing slope (400-800 m.a.s.l.). The dominant trees in the investigated area were chestnut (Castanea sativa Mill.), beech (Fagus sylvatica L.) and deciduous oaks (Quercus spp.) mixed with tree species of intermediate height. Vegetation data were collected in May and August 2009 by systematic sampling. Resprouting of the survived trees and generative regeneration were analysed by counting vegetative shoots from sprouting stools, of seedling age, height and damage rate, respectively. Different vegetation structures related to low or high fire intensity were clearly visible three years after the forest fire, creating various habitats for both new invaders and seedlings of the stand-forming trees. The dominant chestnut was the only tree species that regenerated effectively by sprouting from stools. Seedlings of the stand-forming trees grew in high abundance under shadow conditions close to their mother trees which provided the seed source. In contrast, pioneer trees invaded patches where full light was available. Under such conditions the two main woody alien plant species, Ailanthus altissima and Robinia pseudoacacia, grew in high abundance. Due to the different ecological requirements of indigenous and alien tree seedlings, not any interaction between the two groups was detected.  相似文献   

19.
Resprouting from subterranean structures is a principal method of vegetative regeneration that many shrub species show after a disturbance. This study, therefore, aims to determine the resprouting capacity and intensity of six dominant species in an Atlantic shrubland area located in the NW of the Iberian Peninsula and compare their resprouting and germinating strategies. Resprouting intensity is measured using three variables: individual probability of resprouting, number of resprouts and length of these sprouts in three plant-age classes. The intensity for each species was calculated using a simple index (IRI) that included the three measured variables. All studied species, excepting Erica umbellata, could resprout. According to the IRI values, there are three groups of species: strong resprouters (Ulex europaeus, Ulex minor and Pterospartum tridentatum), weak resprouters (Ulex micranthus and Genista triacanthos) and non-resprouters (E. umbellata). The germination of strong resprouters is highly stimulated by fire. Frequent disturbances remove the non- and weak resprouter populations and promote the strong resprouter ones.  相似文献   

20.
Resprouting is a key functional trait that allows plants to survive diverse disturbances. The fitness benefits associated with resprouting include a rapid return to adult growth, early flowering, and setting seed. The resprouting responses observed following fire are varied, as are the ecological outcomes. Understanding the ecological divergence and evolutionary pathways of different resprouting types and how the environment and genetics interact to drive such morphological evolution represents an important, but under‐studied, topic. In the present study, microsatellite markers and microevolutionary approaches were used to better understand: (1) whether genetic differentiation is related to morphological divergence among resprouting types and if so, whether there are any specific genetic variations associated with morphological divergence and (2) the evolutionary pathway of the transitions between two resprouting types in Banksia attenuata (epicormic resprouting from aerial stems or branch; resprouting from a underground lignotuber). The results revealed an association between population genetic differentiation and the morphological divergence of postfire resprouting types in B. attenuata. A microsatellite allele has been shown to be associated with epicormic populations. Approximate Bayesian Computation analysis revealed a likely evolutionary transition from epicormic to lignotuberous resprouting in B. attenuata. It is concluded that the postfire resprouting type in B. attenuata is likely determined by the fire's characteristics. The differentiated expression of postfire resprouting types in different environments is likely a consequence of local genetic adaptation. The capacity to shift the postfire resprouting type to adapt to diverse fire regimes is most likely the key factor explaining why B. attenuata is the most widespread member of the Banksia genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号