首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calmodulin (CaM) is an essential component of calcium signaling in multicellular organisms. We used null mutations of the Drosophila CaM gene (Cam) in combination with clonal analysis and immunolocalization to examine the effects of loss of Cam function in the ovarian germline and developing embryo. These studies have uncovered unexpected and striking movements of CaM protein within these tissues. In the ovary, evidence for transfer of CaM from an external source, across plasma membranes, into the germline cells was obtained. In late embryogenesis, maternally derived CaM protein relocalizes dramatically within the nervous system of both wildtype and Cam null embryos-a process that may also involve movement across cell membranes. These findings indicate dynamic, unsuspected elements to the in vivo functions of CaM in the whole organism.  相似文献   

2.
The ovaries of early embryos (40 days post coitum/p.c.) of the bat Carollia perspicillata contain numerous germ-line cysts, which are composed of 10 to 12 sister germ cells (cystocytes). Variability in the number of cystocytes within the cyst and between the cysts (defying the Giardina rule) indicates that the mitotic divisions of the cystoblast are asynchronous in this bat species. Serial section analysis showed that the cystocytes are interconnected via intercellular bridges that are atypical, strongly elongated, short-lived, and rich in microtubule bundles and microfilaments. During slightly later stages of embryonic development (44-46 days p.c.), somatic cells penetrate the cyst, and their cytoplasmic projections separate individual oocytes. Separated oocytes surrounded by a single layer of somatic cells constitute the primordial ovarian follicles. The oocytes of C. perspicillata are similar to mouse oocytes and are asymmetric. In both species, this asymmetry is clearly recognizable in the localization of the Golgi complexes. The presence of germ-line cysts and intercellular bridges (although noncanonical) in the fetal ovaries of C. perspicillata suggest that the formation of germ-line cysts is an evolutionarily conserved phase in the development of the female gametes in a substantial part of the animal kingdom.  相似文献   

3.
The translational repressor Nanos is required in the germ line stem cells of the Drosophila ovary to maintain their capacity for self‐renewal. Following division of the stem cells, Nanos is inhibited in the daughters that differentiate into cysts and ultimately become mature oocytes. The control of Nanos activity is thus an important aspect of the switch from self‐renewal to differentiation. In this report, we describe a genetic interaction between nanos and Enhancer of nos, an allele of the previously uncharacterized locus CG4699. We find that E(nos) protein is required for normal accumulation of Nanos in the ovary and thus for maintenance of the germ line. The mechanism by which E(nos)/CG4699 protein acts is not clear, although it has been found in a complex with Mof acetylase. Consistent with the finding that E(nos) interacts with Mof, we observe that nanos and mof also interact genetically to maintain normal oogenesis. genesis 48:161–170, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Sexually reproducing metazoans establish a cell lineage during development that is ultimately dedicated to gamete production. Work in a variety of animals suggests that a group of conserved molecular determinants act in this germ line maintenance and function. The most universal of these genes are Vasa and Vasa‐like DEAD‐box RNA helicase genes. However, recent evidence indicates that Vasa genes also function in other cell types, distinct from the germ line. Here we evaluate our current understanding of Vasa function and its regulation during development, addressing Vasa's emerging role in multipotent cells. We also explore the evolutionary diversification of the N‐terminal domain of this gene and how this impacts the association of Vasa with nuage‐like perinuclear structures.  相似文献   

5.
In mammals, the final number of oocytes available for reproduction of the next generation is defined at birth. Establishment of this oocyte pool is essential for fertility. Mammalian primordial germ cells form and migrate to the gonad during embryonic development. After arriving at the gonad, the germ cells are called oogonia and develop in clusters of cells called germ line cysts or oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. The oocyte nests break apart into individual cells and become packaged into primordial follicles. During this time, only a subset of oocytes ultimately survive and the remaining immature eggs die by programmed cell death. This phase of oocyte differentiation is poorly understood but molecules and mechanisms that regulate oocyte development are beginning to be identified. This review focuses on these early stages of female germ cell development.  相似文献   

6.
This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ‐line associated factors—vasa, nanos, piwi—and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line into how these animals can help in this research field. The review is not intended to be comprehensive—sea star reproduction has been studied for over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. genesis 52:367–377, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Summary In aberrant egg follicles of the pattern mutant dicephalic (dic) the oocyte is wedged in between two groups of nurse cells, and this condition may give rise to embryos which express anterior traits at both ends. We have analysed the role of the dic genotype of the germ line cells and the surrounding somatic follicle cells in the formation of the dic follicular phenotype. By means of pole cell transplantations into Fs (1) K 1237 hosts (this cell-autonomous mutation causes degeneration of the host's germ line cells early in oogenesis), we constructed chimeras in which either the follicle cells, the germ line cells, or both were homozygous for the dic mutation. In all three combinations the dic phenotype was expressed but not in controls with dic + in both germ line cells and follicular epithelium. Since follicles with the dic phenotype may be produced if either the germ line cells or the follicle cells lack dic + gene activity we suggest that cellular interactions between both cell types are required for the correct positioning of the oocyte at the follicle's posterior pole.  相似文献   

8.
9.
Several media were tested for the extent to which they promoted high fertilization efficiencies in ovulated, stripped Xenopus eggs. One medium was selected for maintaining eggs in a ‘delayed fertilization’ (DelF) condition. DelF eggs displayed several unusual characteristics, including shift of the center of gravity, prominent sperm entrance site, and occasional polyspermy. The frequency of normal pattern formation varied according to the length of time eggs were maintained in the DelF condition. Various developmental abnormalities were observed during gastrulation, neurulation, and organogenesis. Most abnormalities appeared, however, to be related to morphogenesis of the endoderm. Primordial germ cell (PGC) development was examined in DelF eggs which displayed normal external morphological features at the swimming tadpole stage. PGC counts were usually normal in short-duration (eg, 5 hr) DelF eggs, but frequently substantially reduced or completely diminished in longer-duration (eg, 25hr) tadpoles. Six spawnings were compared and shown to exhibit considerable variability in fertility, morphogenesis, and PGC development. Yolk platelet shifts and developmental parameters were examined in two additional spawnings. The subcortical cytoplasm in which the germ plasm is normally localized appeared to be disrupted in longer duration DelF eggs. That observation may account for low PGC counts in DelF tadpoles.  相似文献   

10.
11.
During oogenesis in Drosophila, germ cells appear in sequential clusters of 16 interconnected cells. The events surrounding the differentiation of these cells are not fully understood. Here we present genetic and morphological analysis of mutations in the gene stand still (stil). Through complementation analyses we have refined the location of this gene to cyological region 49B-C. Our analyses of ovaries from ethylmethane sulfonate (EMS) - induced mutant alleles of this gene suggest that mutations in the stil gene produce a wide range of phenotypic abnormalities, from the absence of germ cells in the most severe alleles, to egg chambers with cytoskeletal defects in the less severe alleles. Our results suggest a role for this gene in specifying or maintaining a cytoskeletal component, with consequences during oogenesis and possibly during germ line sex determination. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc‐fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool‐produced Mab and etanercept (by N‐glycan ultra performance liquid chromatography (UPLC) and liquid chromatography ‐ tandem mass spectrometry (LC‐MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N‐glycan micro‐heterogeneity and etanercept N and O‐linked macro‐heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1187–1200, 2015  相似文献   

13.
The organization of the ovaries in representative of the Salifidae (Hirudinida, Erpobdelliformes) was studied at the ultrastructural level for the first time. Like in other leeches, the ovaries of Barbronia weberi are composed of an outer envelope (i.e., an ovisac made up of two coelomic epithelia, muscle cells, and connective tissue) and several internal units, which are broadly similar to the ovary cords found in representatives of the Erpobdellidae. There are usually 6–8 ovary cords that are twisted or cambered with a narrow apical part and a broader, irregularly shaped distal end in each ovisac of B. weberi. Each ovary cord is built from somatic and germ‐line cells and the latter tend to form multicellular cysts that are equipped with a central cytoplasmic core (cytophore). There are two morphologically different subpopulations of germ‐line cells: oocytes and more numerous nurse cells. Growing oocytes form protuberances on the ovary cord surface and eventually detach from the cord and float freely in the ovisac lumen, whereas the other components of germ‐line cysts (i.e., nurse cells and cytophore) degenerate. It should be pointed out that there is a prominent gradient of germ‐cell development along the long axis of the cord. The somatic cells form the ovary cord envelope (the so‐called spongiosa cells) and also penetrate the spaces between germ‐line cells. Both kinds of the somatic cells, that is, those forming the cord envelope and the somatic cells that are associated with oocytes (follicular cells) have a well‐developed system of intercellular channels. Additionally, one prominent somatic cell, the apical cell, was found at the apical tip of each ovary cord. Because the aforementioned features of ovary cords found in B. weberi are very similar (with a few minor exceptions) to the ovary cords that have been described in Erpobdella octoculata and E. johanssoni, we propose the term “ovary cords of the Erpobdella type” for them. Our results support a close phylogenetic relationship between Salifidae and Erpobdellidae. J. Morphol. 275:479–488, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Three Ultrabithorax (Ubx) alleles and three different deficiencies of the bithorax complex (BX-C) of Drosophila melanogaster have been tested for maternal effects in the germ line. The dominant female sterile technique was used. The Ubx alleles and a deletion of the abdominal region of the BX-C are homozygous viable in germ line clones and show no maternal effects. Two deletions which lack the proximal portion of the BX-C are lethal in the female germ line indicating either that these deficiencies lack genes apart from the BX-C that are necessary for fertility or that there are BX-C genes that are essential for normal maternal germ line function. The significance of the bias in the isolation of only zygotic mutations at the BX-C are discussed with respect to these results.  相似文献   

15.
Fish germ cells   总被引:2,自引:0,他引:2  
Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplan-tation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking spe...  相似文献   

16.
American alligator (Alligator mississippiensis) ovary development is incomplete at hatching. During the months following hatching, the cortical processes of oogenesis started in ovo continues and folliculogenesis is initiated. Additionally, the medullary region of the gonad undergoes dramatic restructuring. We describe alligator ovarian histology at hatching, 1 week, 1 month, and 3 months of age in order to characterize the timing of morphological development and compare these findings to chicken ovary development. At hatching, the ovarian cortex presents a germinal epithelium containing oogonia and a few primary oocytes irregularly scattered between somatic epithelial cells. The hatchling medulla shows fragmentation indicative of the formation of lacunae. By 1 week of age, oocytes form growing nests and show increased interactions with somatic cells, indicative of the initiation of folliculogenesis. Medullary lacunae increase in diameter and contain secretory material in their lumen. At 1 month, nest sizes and lacunar diameters continue to enlarge. Pachytene oocytes surrounded by somatic cells are more frequent. Trabeculae composed of dense irregular connective tissue divide cortical nests. Three months after hatching oocytes in meiotic stages of prophase I up to diplotene are present. The ovary displays many enlarged follicles with oocytes in diplotene arrest, thecal layers, lampbrush chromosomes, and complete layers of follicular cells. The medulla is an elaborated complex of vascularized lacunae underlying the cortex and often containing discrete lymphoid aggregates. While the general morphology of the alligator ovary is similar to that of the chicken ovary, the progression of oogenesis and folliculogenesis around hatching is notably slower in alligators. Diplotene oocytes are observed at hatching in chickens, but not until 3 months in alligators. Folliculogenesis is completed at 3 weeks in chickens whereas it is still progressing at 3 months in alligators.  相似文献   

17.
Summary Our report presents an analysis of the development and dynamics of the female germ line inDrosophila. Females were produced that were mosaic either for attached-X chromosomes and a ring-X (triplo-X-diplo-X), or for and a marked Y-chromosome . The germ-line and genitalia of these females were analysed by direct microscopic observation or by examination of the progeny.Eggs derived from triplo-X germ cells were hardly capable of supporting development, with most of the zygotes dying during embryonic development. The analysis of the germ line was therefore carried out mainly by direct observation of histochemically stained developing oocytes in the ovaries of mosaic females.The total germ cell population of both ovaries of a female was mosaic in 22–29% of the tested animals. From this frequency of mosaicism we estimated the number of functional primordial germ cells to be betwen 3 and 6 cells at the blastoderm stage. At this stage the cell lineages for the left and right ovary are not yet separated.The germ cell population of individual ovarioles was frequently mosaic which shows that the few stem cells in an ovariole are recruited as a group and are not clonal descendants of a single ancestor cell per ovariole. An analysis of the sequential pattern of oocyte-nurse cell cysts in mosaic ovarioles revealed that neighbouring cysts tend to be of the same genotype. This suggests that the stem cells of the adult ovaries preferentially divide in bursts, one of them giving rise to two, three and sometimes even more cystocytes in a row.In addition, the foci for lethality and sterility of the triplo-X condition were determined. Non-mosaic triplo-X females (metafemales) are hardly viable and invariably sterile. Using our mosaics, the focus forlethality could be mapped to a region very near the ventral prothoracic discs. The focus forsterility resides in the genitalia, since flies with triplo-X genitalia never laid any eggs, regardless of the genotype of their ovaries.  相似文献   

18.
Serious doubts over “Eggs forever?”   总被引:1,自引:0,他引:1  
A recent commentary in this journal by Byskov et al. (2005) claims that, despite published results from numerous independent lines of investigation from our laboratory and others, there does not "exist any evidence for neo-folliculogenesis in the adult mammalian ovary." While we agree with Byskov et al. that our work represents a radical departure from the age-old dogma that mammalian females permanently lose the capacity for oocyte and follicle production during the perinatal period, careful examination of all of the available data leaves no doubt that adult female mammals retain the capacity for oogenesis and folliculogenesis. These findings do not change the fact that exhaustion of the oocyte pool occurs with advancing chronological age--a process responsible for driving the menopause in women--but rather question the basic mechanism underlying age-related ovarian failure. In this regard, studies of aging male mice have demonstrated that testicular atrophy is associated with a dramatic decline in the number, activity and quality of germline stem cells that maintain spermatogenesis during adulthood (Zhang et al., 2006). Therefore, to the contrary of the opinion of Byskov et al. that such a process would be "considered exceptional among stem cells," it is certainly reasonable to hypothesize that a similar deterioration of female germline stem cell function underlies the decline in oocyte quality and the onset of ovarian failure in aging females. Further, while we accept that a departure from conventional thinking can take years to gain widespread acceptance, we feel this resistance to change should not be construed as the sole means to voice opinions about the validity of our data or the maturity of our principal conclusion.  相似文献   

19.
Here, I provide the first direct estimate of the spontaneous mutation rate in an Old World monkey, using a seven individual, three‐generation pedigree of African green monkeys. Eight de novo mutations were identified within ~1.5 Gbp of accessible genome, corresponding to an estimated point mutation rate of 0.94 × 10?8 per site per generation, suggesting an effective population size of ~12000 for the species. This estimation represents a significant improvement in our knowledge of the population genetics of the African green monkey, one of the most important nonhuman primate models in biomedical research. Furthermore, by comparing mutation rates in Old World monkeys with the only other direct estimates in primates to date–humans and chimpanzees–it is possible to uniquely address how mutation rates have evolved over longer time scales. While the estimated spontaneous mutation rate for African green monkeys is slightly lower than the rate of 1.2 × 10?8 per base pair per generation reported in chimpanzees, it is similar to the lower range of rates of 0.96 × 10?8–1.28 × 10?8 per base pair per generation recently estimated from whole genome pedigrees in humans. This result suggests a long‐term constraint on mutation rate that is quite different from similar evidence pertaining to recombination rate evolution in primates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号