共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycobacteriophages are dsDNA viruses that infect mycobacterial hosts. The mycobacteriophage Ms6 accomplishes lysis by producing two cell wall hydrolytic enzymes, Lysin A (LysA) that possesses a central peptidoglycan recognition protein (PGRP) super-family conserved domain with the amidase catalytic site, that cleaves the amide bond between the N-acetylmuramic acid and L-alanine residues in the oligopeptide crosslinking chains of the peptidoglycan and Lysin B (LysB) a mycolylarabinogalactan esterase that hydrolyzes the mycolic acids from the mycolyl-arabinogalactan-peptidoglycan complex. Examination of the endolysin (lysA) DNA sequence revealed the existence of an embedded gene (lysA(241)) encoded in the same reading frame and preceded by a consensus ribosome-binding site. In the present work we show that, even though lysA is essential for Ms6 viability, phage mutants that express only the longer (Lysin(384)) or the shorter (Lysin(241)) endolysin are viable, but defective in the normal timing, progression and completion of host cell lysis. In addition, both endolysins have peptidoglycan hydrolase activity and demonstrated broad growth inhibition activity against various gram-positive bacteria and mycobacteria. 相似文献
2.
The ANGULATA7 gene encodes a DnaJ‐like zinc finger‐domain protein involved in chloroplast function and leaf development in Arabidopsis 下载免费PDF全文
Tamara Muñoz‐Nortes José Manuel Pérez‐Pérez María Rosa Ponce Héctor Candela José Luis Micol 《The Plant journal : for cell and molecular biology》2017,89(5):870-884
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid‐localized proteins that perform essential functions in leaf growth and development. A large‐scale screen previously allowed us to isolate ethyl methanesulfonate‐induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7‐1 (anu7‐1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic‐lethal mutations. ANU7 encodes a plant‐specific protein that contains a domain similar to the central cysteine‐rich domain of DnaJ proteins. The observed genetic interaction of anu7‐1 with a loss‐of‐function allele of GENOMES UNCOUPLED1 suggests that the anu7‐1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7‐1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid‐encoded genes, we found that anu7‐1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. 相似文献
3.
Daniel Weckbecker Sebastian Longen Jan Riemer Johannes M Herrmann 《The EMBO journal》2012,31(22):4348-4358
Mia40 is a recently identified oxidoreductase in the intermembrane space (IMS) of mitochondria that mediates protein import in an oxidation‐dependent reaction. Substrates of Mia40 that were identified so far are of simple structure and receive one or two disulphide bonds. Here we identified the protease Atp23 as a novel substrate of Mia40. Atp23 contains ten cysteine residues which are oxidized during several rounds of interaction with Mia40. In contrast to other Mia40 substrates, oxidation of Atp23 is not essential for its import; an Atp23 variant in which all ten cysteine residues were replaced by serine residues still accumulates in mitochondria in a Mia40‐dependent manner. In vitro Mia40 can mediate the folding of wild‐type Atp23 and prevents its aggregation. In these reactions, the hydrophobic substrate‐binding pocket of Mia40 was found to be essential for its chaperone‐like activity. Thus, Mia40 plays a much broader role in import and folding of polypeptides than previously expected and can serve as folding factor for proteins with complex disulphide patterns as well as for cysteine‐free polypeptides. 相似文献
4.
5.
The GmFWL1 (FW2‐2‐like) nodulation gene encodes a plasma membrane microdomain‐associated protein 下载免费PDF全文
Zhenzhen Qiao Laurent Brechenmacher Benjamin Smith Gregory W. Strout William Mangin Christopher Taylor Scott D. Russell Gary Stacey Marc Libault 《Plant, cell & environment》2017,40(8):1442-1455
The soybean gene GmFWL1 (FW2‐2‐like1) belongs to a plant‐specific family that includes the tomato FW2‐2 and the maize CNR1 genes, two regulators of plant development. In soybean, GmFWL1 is specifically expressed in root hair cells in response to rhizobia and in nodules. Silencing of GmFWL1 expression significantly reduced nodule numbers supporting its role during soybean nodulation. While the biological role of GmFWL1 has been described, its molecular function and, more generally, the molecular function of plant FW2‐2‐like proteins is unknown. In this study, we characterized the role of GmFWL1 as a membrane microdomain‐associated protein. Specifically, using biochemical, molecular and cellular methods, our data show that GmFWL1 interacts with various proteins associated with membrane microdomains such as remorin, prohibitins and flotillins. Additionally, comparative genomics revealed that GmFWL1 interacts with GmFLOT2/4 (FLOTILLIN2/4), the soybean ortholog to Medicago truncatula FLOTILLIN4, a major regulator of the M. truncatula nodulation process. We also observed that, similarly to MtFLOT4 and GmFLOT2/4, GmFWL1 was localized at the tip of the soybean root hair cells in response to rhizobial inoculation supporting the early function of GmFWL1 in the rhizobium infection process. 相似文献
6.
Cheng Peng Yihua Wang Feng Liu Yulong Ren Kunneng Zhou Jia Lv Ming Zheng Shaolu Zhao Long Zhang Chunming Wang Ling Jiang Xin Zhang Xiuping Guo Yiqun Bao Jianmin Wan 《The Plant journal : for cell and molecular biology》2014,77(6):917-930
Starch is the most widespread form of energy storage in the plant kingdom. Although many enzymes and related factors have been identified for starch biosynthesis, unknown players remain to be identified, given that it is a complicated and sophisticated process. The endosperm of rice (Oryza sativa) has been used for the study of starch synthesis. Here, we report the cloning and characterization of the FLOURY ENDOSPERM6 (FLO6) gene in rice. In the flo6 mutant, the starch content is decreased and the normal physicochemical features of starch are changed. Significantly, flo6 mutant endosperm cells show obvious defects in compound granule formation. Map‐based cloning showed that FLO6 encodes a protein of unknown function. It harbors an N–terminal transit peptide that ensures its correct localization and functions in the plastid, and a C–terminal carbohydrate‐binding module 48 (CBM48) domain that binds to starch. Furthermore, FLO6 can interact with isoamylase1 (ISA1) both in vitro and in vivo, whereas ISA1 does not bind to starch directly. We thus propose that FLO6 may act as a starch‐binding protein involved in starch synthesis and compound granule formation through a direct interaction with ISA1 in developing rice seeds. Our data provide a novel insight into the role of proteins with the CBM48 domain in plant species. 相似文献
7.
《Gene》1997,203(2):89-93
Recent studies in yeast, Drosophila and humans have revealed the existence of a highly conserved gene encoding a novel protein, Dodo, comprised of four modules: a WW domain, involved in protein–protein interactions, a peptidyl–prolyl cis–trans isomerase (PPIase) domain belonging to a recently described third family of PPIases involved in protein folding and unfolding, a nuclear localization motif and finally, a long, surface-exposed α-helix that is likely to be involved in binding to a cell cycle serine/threonine kinase. The genetic, molecular, biochemical and structural data are reviewed in the context of the potential biological properties of this new protein family. 相似文献
8.
9.
The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion 总被引:1,自引:0,他引:1 下载免费PDF全文
The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is suppressed by the antimicrotubule drugs propyzamide and oryzalin, and right skewing is exacerbated by cold treatment. Cloning revealed that sku6-1 is allelic to spiral1-1 (spr1-1). However, modifiers in the Columbia (Col) and Landsberg erecta (Ler) ecotype backgrounds mask noncomplementation in sku6-1 (Col)/spr1-1 (Ler) F1 plants. The SPR1 gene encodes a plant-specific 12-kD protein that is ubiquitously expressed and belongs to a six-member gene family in Arabidopsis. An SPR1:green fluorescent protein (GFP) fusion expressed in transgenic seedlings localized to microtubules within the cortical array, preprophase band, phragmoplast, and mitotic spindle. SPR1:GFP was concentrated at the growing ends of cortical microtubules and was dependent on polymer growth state; the microtubule-related fluorescence dissipated upon polymer shortening. The protein has a repeated motif at both ends, separated by a predicted rod-like domain, suggesting that it may act as an intermolecular linker. These observations suggest that SPR1 is involved in microtubule polymerization dynamics and/or guidance, which in turn influences touch-induced directional cell expansion and axial twisting. 相似文献
10.
Jekyll encodes a novel protein involved in the sexual reproduction of barley 总被引:1,自引:0,他引:1 下载免费PDF全文
Radchuk V Borisjuk L Radchuk R Steinbiss HH Rolletschek H Broeders S Wobus U 《The Plant cell》2006,18(7):1652-1666
Cereal seed development depends on the intimate interaction of filial and maternal tissues, ensuring nourishment of the new generation. The gene jekyll, which was identified in barley (Hordeum vulgare), is preferentially expressed in the nurse tissues. JEKYLL shares partial similarity with the scorpion Cn4 toxin and is toxic when ectopically expressed in Escherichia coli and tobacco (Nicotiana tabacum). In barley, jekyll is upregulated in cells destined for autolysis. The gene generates a gradient of expression in the nucellar projection, which mediates the maternal-filial interaction during seed filling. Downregulation of jekyll by the RNA interference technique in barley decelerates autolysis and cell differentiation within the nurse tissues. Flower development and seed filling are thereby extended, and the nucellar projection no longer functions as the main transport route for assimilates. A slowing down in the proliferation of endosperm nuclei and a severely impaired ability to accumulate starch in the endosperm leads to the formation of irregular and small-sized seeds at maturity. Overall, JEKYLL plays a decisive role in the differentiation of the nucellar projection and drives the programmed cell death necessary for its proper function. We further suggest that cell autolysis during the differentiation of the nucellar projection allows the optimal provision of basic nutrients for biosynthesis in endosperm and embryo. 相似文献
11.
Analytical work on the fractionation of the glycan strands of Streptococcus pneumoniae cell wall has led to the observation that an unusually high proportion of hexosamine units (over 80% of the glucosamine and 10% of the muramic acid residues) was not N-acetylated, explaining the resistance of the peptidoglycan to the hydrolytic action of lysozyme, a muramidase that cleaves in the glycan backbone. A gene, pgdA, was identified as encoding for the peptidoglycan N-acetylglucosamine deacetylase A with amino acid sequence similarity to fungal chitin deacetylases and rhizobial NodB chitooligosaccharide deacetylases. Pneumococci in which pgdA was inactivated by insertion duplication mutagenesis produced fully N-acetylated glycan and became hypersensitive to exogenous lysozyme in the stationary phase of growth. The pgdA gene may contribute to pneumococcal virulence by providing protection against host lysozyme, which is known to accumulate in high concentrations at infection sites. 相似文献
12.
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants. 相似文献
13.
TgPL2, a patatin‐like phospholipase domain‐containing protein,is involved in the maintenance of apicoplast lipids homeostasis in Toxoplasma 下载免费PDF全文
Maude F. Lévêque Laurence Berry Yoshiki Yamaryo‐Botté Hoa Mai Nguyen Marine Galera Cyrille Y. Botté Sébastien Besteiro 《Molecular microbiology》2017,105(1):158-174
Patatin‐like phospholipases are involved in numerous cellular functions, including lipid metabolism and membranes remodeling. The patatin‐like catalytic domain, whose phospholipase activity relies on a serine‐aspartate dyad and an anion binding box, is widely spread among prokaryotes and eukaryotes. We describe TgPL2, a novel patatin‐like phospholipase domain‐containing protein from the parasitic protist Toxoplasma gondii. TgPL2 is a large protein, in which the key motifs for enzymatic activity are conserved in the patatin‐like domain. Using immunofluorescence assays and immunoelectron microscopy analysis, we have shown that TgPL2 localizes to the apicoplast, a non‐photosynthetic plastid found in most apicomplexan parasites. This plastid hosts several important biosynthetic pathways, which makes it an attractive organelle for identifying new potential drug targets. We thus addressed TgPL2 function by generating a conditional knockdown mutant and demonstrated it has an essential contribution for maintaining the integrity of the plastid. In absence of TgPL2, the organelle is rapidly lost and remaining apicoplasts appear enlarged, with an abnormal accumulation of membranous structures, suggesting a defect in lipids homeostasis. More precisely, analyses of lipid content upon TgPL2 depletion suggest this protein is important for maintaining levels of apicoplast‐generated fatty acids, and also regulating phosphatidylcholine and lysophosphatidylcholine levels in the parasite. 相似文献
14.
The SCP2‐thiolase‐like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism 下载免费PDF全文
Tiila R. Kiema Guillaume Bouyssou Stefan E. H. Alexson Ulrich Bergmann Patrick Moreau Paul A. M. Michels Frédéric Bringaud Rik K. Wierenga 《Proteins》2016,84(8):1075-1096
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2‐thiolase‐like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2‐Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5‐fold reduction of de novo sterol biosynthesis from glucose‐ and acetate‐derived acetyl‐CoA. Fluorescence analyses of EGFP‐tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP‐acetoacetyl‐CoA (1.90 Å) and TbSLP‐malonyl‐CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl‐CoA tightly (Kd 90 µM), acetoacetyl‐CoA moderately (Kd 0.9 mM) and acetyl‐CoA and CoA very weakly. TbSLP possesses low malonyl‐CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075–1096. © 2016 Wiley Periodicals, Inc. 相似文献
15.
The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype. 相似文献
16.
The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation 总被引:3,自引:1,他引:3
Holding DR Otegui MS Li B Meeley RB Dam T Hunter BG Jung R Larkins BA 《The Plant cell》2007,19(8):2569-2582
The maize (Zea mays) floury1 (fl1) mutant was first reported almost 100 years ago, but its molecular identity has remained unknown. We report the cloning of Fl1, which encodes a novel zein protein body membrane protein with three predicted transmembrane domains and a C-terminal plant-specific domain of unknown function (DUF593). In wild-type endosperm, the FL1 protein accumulates at a high level during the period of zein synthesis and protein body development and declines to a low level at kernel maturity. Immunogold labeling showed that FL1 resides in the endoplasmic reticulum surrounding the protein body. Zein protein bodies in fl1 mutants are of normal size, shape, and abundance. However, mutant protein bodies ectopically accumulate 22-kD alpha-zeins in the gamma-zein-rich periphery and center of the core, rather than their normal discrete location in a ring at outer edge of the core. The 19-kD alpha-zein is uniformly distributed throughout the core in wild-type protein bodies, and this distribution is unaffected in fl1 mutants. Pairwise yeast two-hybrid experiments showed that FL1 DUF593 interacts with the 22-kD alpha-zein. Results of these studies suggest that FL1 participates in protein body formation by facilitating the localization of 22-kD alpha-zein and that this is essential for the formation of vitreous endosperm. 相似文献
17.
《Gene》1997,186(1):119-125
We have identified a novel protein kinase encoded by the misshapen gene, which is required for the normal shape and orientation of Drosophila photoreceptor cells. misshapen is also expressed in the embryonic mesoderm, pole plasm and other sites of cell shape change or movement. We propose that msn may act in a signal transduction pathway leading to cytoskeletal re-arrangements. 相似文献
18.
Min Ge Yuancong Wang Yuhe Liu Lu Jiang Bing He Lihua Ning Hongyang Du Yuanda Lv Ling Zhou Feng Lin Tifu Zhang Shuaiqiang Liang Haiyan Lu Han Zhao 《The Plant journal : for cell and molecular biology》2020,102(2):353-368
Maize exhibits marked growth and yield response to supplemental nitrogen (N). Here, we report the functional characterization of a maize NIN‐like protein ZmNLP5 as a central hub in a molecular network associated with N metabolism. Predominantly expressed and accumulated in roots and vascular tissues, ZmNLP5 was shown to rapidly respond to nitrate treatment. Under limited N supply, compared with that of wild‐type (WT) seedlings, the zmnlp5 mutant seedlings accumulated less nitrate and nitrite in the root tissues and ammonium in the shoot tissues. The zmnlp5 mutant plants accumulated less nitrogen than the WT plants in the ear leaves and seed kernels. Furthermore, the mutants carrying the transgenic ZmNLP5 cDNA fragment significantly increased the nitrate content in the root tissues compared with that of the zmnlp5 mutants. In the zmnlp5 mutant plants, loss of the ZmNLP5 function led to changes in expression for a significant number of genes involved in N signalling and metabolism. We further show that ZmNLP5 directly regulates the expression of nitrite reductase 1.1 (ZmNIR1.1) by binding to the nitrate‐responsive cis‐element at the 5′ UTR of the gene. Interestingly, a natural loss‐of‐function allele of ZmNLP5 in Mo17 conferred less N accumulation in the ear leaves and seed kernels resembling that of the zmnlp5 mutant plants. Our findings show that ZmNLP5 is involved in mediating the plant response to N in maize. 相似文献
19.
The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. 总被引:8,自引:1,他引:8 下载免费PDF全文
U Klahre T Noguchi S Fujioka S Takatsuto T Yokota T Nomura S Yoshida N H Chua 《The Plant cell》1998,10(10):1677-1690
We have identified the function of the Arabidopsis DIMINUTO/DWARF1 (DIM/DWF1) gene by analyzing the dim mutant, a severe dwarf with greatly reduced fertility. Both the mutant phenotype and gene expression could be rescued by the addition of exogenous brassinolide. Analysis of endogenous sterols demonstrated that dim accumulates 24-methylenecholesterol but is deficient in campesterol, an early precursor of brassinolide. In addition, we show that dim is deficient in brassinosteroids as well. Feeding experiments using deuterium-labeled 24-methylenecholesterol and 24-methyldesmosterol confirmed that DIM/DWF1 is involved in both the isomerization and reduction of the Delta24(28) bond. This conversion is not required in cholesterol biosynthesis in animals but is a key step in the biosynthesis of plant sterols. Transient expression of a green fluorescent protein-DIM/DWF1 fusion protein and biochemical experiments showed that DIM/DWF1 is an integral membrane protein that most probably is associated with the endoplasmic reticulum. 相似文献
20.
The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport 下载免费PDF全文
A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO(2) conditions. 相似文献