首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95–100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host–parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild‐type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI‐link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti‐prohibitin antibodies during macrophage–Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania–host interaction.  相似文献   

2.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

3.
4.
Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major’s tropism for cutaneous infections.  相似文献   

5.
Leishmania parasites use polymorphonuclear neutrophils as intermediate hosts before their ultimate delivery to macrophages following engulfment of parasite-infected neutrophils. This leads to a silent and unrecognized entry of Leishmania into the macrophage host cell. Neutrophil function depends on its cytoplasmic granules, but their mobilization and role in how Leishmania parasites evade intracellular killing in neutrophils remain undetermined. Here, we have found by ultrastructural approaches that neutrophils ingested Leishmania major promastigotes, and azurophilic granules fused in a preferential way with parasite-containing phagosomes, without promoting parasite killing. Azurophilic granules, identified by the granule marker myeloperoxidase, also fused with Leishmania donovani-engulfed vacuoles in human neutrophils. In addition, the azurophilic membrane marker CD63 was also detected in the vacuole surrounding the parasite, and in the fusion of azurophilic granules with the parasite-engulfed phagosome. Tertiary and specific granules, involved in vacuole acidification and superoxide anion generation, hardly fused with Leishmania-containing phagosomes. L. major interaction with neutrophils did not elicit production of reactive oxygen species or mobilization of tertiary and specific granules. By using immunogold electron microscopy approaches in the engulfment of L. major and L. donovani by human neutrophils, we did not find a significant contribution of endoplasmic reticulum to the formation of Leishmania-containing vacuoles. Live Leishmania parasites were required to be optimally internalized by neutrophils. Our data suggest that Leishmania promastigotes modulate their uptake by neutrophils, and regulate granule fusion processes in a rather selective way to favor parasite survival in human neutrophils.  相似文献   

6.
7.

Background

Leishmania donovani is an intracellular protozoan parasite that causes a lethal systemic disease, visceral leishmaniasis (VL), and is transmitted between mammalian hosts by phlebotomine sandflies. Leishmania expertly survives in these ‘hostile’ environments with a unique redox system protecting against oxidative damage, and host manipulation skills suppressing oxidative outbursts of the mammalian host. Treating patients imposes an additional stress on the parasite and sodium stibogluconate (SSG) was used for over 70 years in the Indian subcontinent.

Methodology/Principal Findings

We evaluated whether the survival capacity of clinical L. donovani isolates varies significantly at different stages of their life cycle by comparing proliferation, oxidative stress tolerance and infection capacity of 3 Nepalese L. donovani strains in several in vitro and in vivo models. In general, the two strains that were resistant to SSG, a stress encountered in patients, attained stationary phase at a higher parasite density, contained a higher amount of metacyclic parasites and had a greater capacity to cause in vivo infection in mice compared to the SSG-sensitive strain.

Conclusions/Significance

The 2 SSG-resistant strains had superior survival skills as promastigotes and as amastigotes compared to the SSG-sensitive strain. These results could indicate that Leishmania parasites adapting successfully to antimonial drug pressure acquire an overall increased fitness, which stands in contrast to what is found for other organisms, where drug resistance is usually linked to a fitness cost. Further validation experiments are under way to verify this hypothesis.  相似文献   

8.
We have isolated a gene, LdGF1, from the protozoan parasite Leishmania donovani. Overexpression of this gene confers a strong selective advantage in liquid culture after stationary phase growth arrest. We could show that recombinant L. donovani or Leishmania major, when overexpressing LdGF1, recover faster from a stationary phase growth arrest than control parasite strains. While no advantage of LdGF1 overexpression could be observed in log phase cultures or after a hydroxyurea-induced S-phase growth arrest, recovery from a cell cycle arrest due to serum deprivation was faster in LdGF1-overexpressing strains. This was found to be due to an accelerated release from a G1 cell cycle arrest. By contrast, in a BALB/c mouse infection system, overexpression of LdGF1 in L. major resulted in reduced virulence. We conclude that increased levels of LdGF1 are beneficiary during recovery from G1 cell cycle arrest, but pose a disadvantage inside a mammalian host. These results are discussed in the context of the observed loss of virulence during in vitro passage of Leishmania parasites.  相似文献   

9.
Establishment of infection by Leishmania depends on the transformation of the invading metacyclic promastigotes into the obligatory intracellular amastigotes, and their subsequent survival in the macrophage phagolysosome, which is low in magnesium. We show that two Leishmania major proteins designated MGT1 and MGT2, which play a critical role in these processes, belong to the two-transmembrane domain (2-TM-GxN) cation transporter family and share homology with the major bacterial magnesium transporter CorA. Although both are present in the endoplasmic reticulum throughout the life cycle of the parasite, MGT1 is more highly expressed in the infectious metacyclic parasites, while MGT2 is enriched in the immature procyclic stages. The two proteins, although predicted to be structurally similar, have features that suggest different regulatory or gating mechanisms. The two proteins may also be functionally distinct, since only MGT1 complements an Escherichia coliΔCorA mutant. In addition, deletion of one mgt1 allele from L. major led to increased virulence, while deletion of one allele of mgt2 resulted in slower growth and total loss of virulence in vitro and in vivo. This loss of virulence may be due to an impaired transformation of the parasites into amastigotes. Deletion of both mgt1 alleles in the hemizygous MGT2 knockdown parasites reversed the growth defect and partially restored virulence. Our data indicate that the MGTs play a critical role in parasite growth, development and virulence.  相似文献   

10.
Leishmania major, an intracellular parasitic protozoon that infects, differentiates and replicates within macrophages, expresses two closely related MIF-like proteins. To ascertain the roles and potential differences of these two Leishmania proteins, recombinant L. major MIF1 and MIF2 have been produced and the structures resolved by X-ray crystallography. Each has a trimeric ring architecture similar to mammalian MIF, but with some structurally distinct features. LmjMIF1, but not LmjMIF2, has tautomerase activity. LmjMIF2 is found in all life cycle stages whereas LmjMIF1 is found exclusively in amastigotes, the intracellular stage responsible for mammalian disease. The findings are consistent with parasite MIFs modulating or circumventing the host macrophage response, thereby promoting parasite survival, but suggest the LmjMIFs have potentially different biological roles. Analysis of the Leishmania braziliensis genome showed that this species lacks both MIF genes. Thus MIF is not a virulence factor in all species of Leishmania.  相似文献   

11.
Leishmania is a protozoan parasite that resides and replicates in macrophages and causes leishmaniasis. The parasite alters the signaling cascade in host macrophages and evades the host machinery. Small G‐proteins are GTPases, grouped in 5 different families that play a crucial role in the regulation of cell proliferation, cell survival, apoptosis, intracellular trafficking, and transport. In particular, the Ras family of small G‐proteins has been identified to play a significant role in the cellular functions mentioned before. Here, we studied the differential expression of the most important small G‐proteins during Leishmania infection. We found major changes in the expression of different isoforms of Ras, mainly in N‐Ras. We observed that Leishmania donovani infection led to enhanced N‐Ras expression, whereas it inhibited K‐Ras and H‐Ras expression. Furthermore, an active N‐Ras pull‐down assay showed enhanced N‐Ras activity. L donovani infection also increased extracellular signal–regulated kinase 1/2 phosphorylation and simultaneously decreased p38 phosphorylation. In contrast, pharmacological inhibition of Ras led to reduction in the phosphorylation of extracellular signal–regulated kinase 1/2 and enhanced the phosphorylation of p38 in Leishmania‐infected cells, which could lead to increased interleukin‐12 expression and decreased interleukin‐10 expression. Indeed, farnesylthiosalicyclic acid (a Ras inhibitor), when used at the effective level in L donovani–infected macrophages, reduced amastigotes in the host macrophages. Thus, upregulated N‐Ras expression during L donovani infection could be a novel immune evasion strategy of Leishmania and would be a potential target for antileishmanial immunotherapy.  相似文献   

12.

Background

Infection with Leishmania results in a broad spectrum of pathologies where L. infantum and L. donovani cause fatal visceral leishmaniasis and L. major causes destructive cutaneous lesions. The identification and characterization of Leishmania virulence genes may define the genetic basis for these different pathologies.

Methods and Findings

Comparison of the recently completed L. major and L. infantum genomes revealed a relatively small number of genes that are absent or present as pseudogenes in L. major and potentially encode proteins in L. infantum. To investigate the potential role of genetic differences between species in visceral infection, seven genes initially classified as absent in L. major but present in L. infantum were cloned from the closely related L. donovani genome and introduced into L. major. The transgenic L. major expressing the L. donovani genes were then introduced into BALB/c mice to select for parasites with increased virulence in the spleen to determine whether any of the L. donovani genes increased visceral infection levels. During the course of these experiments, one of the selected genes (LinJ32_V3.1040 (Li1040)) was reclassified as also present in the L. major genome. Interestingly, only the Li1040 gene significantly increased visceral infection in the L. major transfectants. The Li1040 gene encodes a protein containing a putative component of an endosomal protein sorting complex involved with protein transport.

Conclusions

These observations demonstrate that the levels of expression and sequence variations in genes ubiquitously shared between Leishmania species have the potential to significantly influence virulence and tissue tropism.  相似文献   

13.
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease.  相似文献   

14.
ABSTRACT. Leishmania parasites, which afflict 12 million people in 88 countries, exist as promastigotes transmitted by insect vectors and as amastigotes residing in mammalian macrophages. Promastigote cells arranged in rosettes have also been described but universally disregarded as a distinct stage in the life cycle. We present evidence that only rosettes of Leishmania major promastigotes express cell surface poly‐α2,8 N‐acetyl neuraminic acid (PSA) and PSA containing de‐N‐acetyl neuraminic acid (NeuPSA). Expression of rosette‐specific PSA antigens was mosaic, with individual promastigotes expressing PSA, NeuPSA or both. A 50 kDa protein was detected by Western blot analysis of a detergent‐insoluble cell fraction with both PSA and NeuPSA‐reactive antibodies. Frequencies of rosette formation as well as cell surface PSA/NeuPSA expression were temperature dependent. Rosettes also engaged in an unusual swarming behavior, congregating into extended clusters. Distinct structures resembling cellular fusion bodies were formed in and released from rosettes. The results indicate that rosettes are an unrecognized stage in the life cycle of Leishmania. We hypothesize that rosettes initiate mating in Leishmania during which PSA/NeuPSA expression plays an important role. Recognizing rosettes as a distinct form of the Leishmania life cycle opens new possibilities for treatment or prevention of disease and, possibly, in vitro genetic recombination without passage of cells through insect vectors.  相似文献   

15.

Background

Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development.

Methodology/Principal Findings

Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function.

Conclusions/Significance

The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets.  相似文献   

16.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
18.
6-methylpurine 2′-deoxyriboside killed mouse macrophages infected with amastigotes of Leishmania donovani and Leishmania mexicana, but did not affect the growth of non-parasitized cells. Leishmania extracts cleaved the non-toxic 6-methylpurine 2′-deoxyriboside to 6-methylpurine, a potent adenine antimetabolite for mammalian cells. By eliminating macrophages latently infected with Leishmania donovani amastigotes, 6-methylpurine 2′-deoxyriboside could augment the effects of leishmanicidal agents in vivo.  相似文献   

19.
The initial 7 steps of the glycolytic pathway from glucose to 3-phosphoglycerate are localized in the glycosomes in Leishmania, including step 6, catalyzed by the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In L. donovani and L. mexicana, there exists a second GAPDH enzyme present in the cytosol that is absent in L. braziliensis and that has become a pseudogene in L. major. To investigate the role of the cytosolic GAPDH (cGAPDH), an L. donovani cGAPDH-null mutant was generated, and conversely, the functional L. donovani cGAPDH was introduced into L. major and the resulting engineered parasites were characterized. The L. donovani cGAPDH-null mutant was able to proliferate at the same rate as the wild-type parasite in glucose-deficient medium. However, in the presence of glucose, the L. donovani cGAPDH-null mutant consumed less glucose and proliferated more slowly than the wild-type parasite and displayed reduced infectivity in visceral organs of experimentally infected mice. This demonstrates that cGAPDH is functional in L. donovani and is required for survival in visceral organs. Restoration of cGAPDH activity in L. major, in contrast, had an adverse effect on L. major proliferation in glucose-containing medium, providing a possible explanation of why it has evolved into a pseudogene in L. major. This study indicates that there is a difference in glucose metabolism between L. donovani and L. major, and this may represent an important factor in the ability of L. donovani to cause visceral disease.  相似文献   

20.
A series of bis‐naphthoquinone derivatives prepared by condensation of aryl aldehydes with lawsone were tested for antiparasitic activities against Toxoplasma gondii and Trypanosoma brucei parasites. Monofluorophenyl derivative 1a , 3,4‐difluorophenyl analog 1c and furyl compound 1l exhibited significant activity against T. gondii cells and appear to be new promising drug candidates against this parasite. The 3,4,5‐trifluorophenyl derivative 1g and the isovanillyl derivative 1j displayed selective activity against Leishmania major amastigotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号