首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Major multi-protein photosynthetic complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion into chemical energy in oxygenic photosynthetic organisms. Although the structures and functions of these photosynthetic complexes have been explored, the molecular mechanisms underlying their assembly remain elusive. In this review, we summarize current knowledge of the regulatory components involved in the assembly of thylakoid membrane protein complexes in photosynthetic organisms. Many of the known regulatory factors are conserved between prokaryotes and eukaryotes, whereas others appear to be newly evolved or to have expanded predominantly in eukaryotes. Their specific features and fundamental differences in cyanobacteria, green algae and land plants are discussed.  相似文献   

2.
植物叶绿体类囊体膜及膜蛋白研究进展   总被引:5,自引:0,他引:5  
叶绿体是植物和真核藻类进行光合作用的场所。存在于叶绿体类囊体膜上的蛋白质复合物含有光反应所需的光合色素和电子传递链组分,在光合作用过程中,光化学反应发生在类囊体膜上。因此,类囊体膜是光能向化学能转化的主要场所,因而也一直是光合作用研究的热点。叶绿体类囊体膜的深入研究可以促进光合作用的分子机理研究。该文就叶绿体类囊体膜的三维构象及类囊体膜蛋白的组成和功能研究进行了综述。  相似文献   

3.
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.  相似文献   

4.
5.
6.
7.
Phosphorylation of thylakoid membrane proteins results in a partial inhibition (approximately 15–20%) of the light-saturated rate of oxygen evolution. The site of inhibition is thought to be located on the acceptor side of photosystem 2 (PS2) between the primary, QA, and secondary, QB, plastoquinone acceptors (Hodges et al. 1985, 1987). In this paper we report that thylakoid membrane phosphorylation increases the damping of the quaternary oscillation in the flash oxygen yield and increases the extent of the fast component in the deactivation of the S2 oxidation state. These results support the proposal that thylakoid membrane protein phosphorylation decreases the equilibrium constant for the exchange of an electron between QA and QB. An analysis of the oxygen release patterns using the recurrence matrix model of Lavorel (1976) indicates that thylakoid membrane phosphorylation increases the probability that PS2 miss a S-state transition by 20%. This is equivalent, however, to an insignificant inhibition (approximately 2.4%) of the light-saturated oxygen evolution rate. If a double miss in the S-state transitions is included when the PS2 centres are in S2 the fit between the experimental and theoretical oxygen yield sequences is better, and sufficient to account for the 15–20% inhibition in the steady-state oxygen yield. A double miss in the S-state transition is a consequence of an increased population of PS2 centres retaining QA : not only will these PS2 centres fail to catalyse photochemical charge transfer until QA is reoxidized, but the re-oxidation reaction will also result in the deactivation of S2 to S1.Abbreviations Chl Chlorophyll - PS2 Photosystem 2 - Si The oxidation states of PS2 (where i can be from 0 to 4) - QA and QB the anionic semiquinone forms of the primary and secondary plastoquione acceptors of PS2  相似文献   

8.
9.
10.
Jrgen Bergstrm  Tore Vnngrd 《BBA》1982,682(3):452-456
The cytochromes in spinach chloroplasts were studied using EPR spectroscopy. In addition to the low-spin heme signals previously assigned, cytochrome f (gz 3.51), high-potential cytochrome b-559 (gz 3.08) and cytochrome b-559 converted to a low-potential form (gz 2.94), a high-spin heme signal was induced by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). However, this signal cannot be due to cytochrome b-563 in its native form. The orientation of the cytochromes in the thylakoid membrane was studied in magnetically oriented chloroplasts. Cytochrome b-559 in the native state and in the low-potential form was found to have its heme plane perpendicular to the membrane plane. The orientation was the same for cytochrome b-559 oxidized by low-temperature illumination, which suggests that also the reduced heme is oriented perpendicular to the membrane.  相似文献   

11.
To study the functions of the nuclear genes involved in chloroplast development, we systematically analyzed albino and pale-green Arabidopsis thaliana mutants by using a two-component transposon system based on the Ac/Ds element of maize as a mutagen. One of the pale-green mutants, albino or pale green mutant 1 (designated as apg1), did not survive beyond the seedling stage, when germinated on soil. The chloroplasts of the apg1 plants contained decreased numbers of lamellae with reduced levels of chlorophyll. A gene encoding a 37 kDa polypeptide precursor of the chloroplast inner envelope membrane was disrupted by insertion of the Ds transposon in apg1. The 37 kDa protein had partial sequence similarity to the S-adenosylmethionine-dependent methyltransferase. The apg1 plants lacked plastoquinone (PQ), suggesting that the APG1 protein is involved in the methylation step of PQ biosynthesis, which is localized at the envelope membrane. Our results demonstrate the importance of the 37 kDa protein of the chloroplast inner envelope membrane for chloroplast development in Arabidopsis.  相似文献   

12.
The insertion of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane of the chloroplast is cpSRP-dependent, and requires the stromal components cpSRP54 and cpSRP43, the membrane-bound SRP receptor cpFtsY and the integral membrane protein Alb3. Previous studies demonstrated that the Arabidopsis mutant lacking both cpSRP54 and cpSRP43 had pale yellow leaves, but was viable, whereas the mutants lacking Alb3 exhibit an albino phenotype that is more severe and seedling lethality. We previously showed that a maize mutant lacking cpFtsY had a pale yellow-green phenotype and was seedling lethal. To compare the in vivo requirements of cpFtsY and Alb3 in thylakoid biogenesis in greater detail, we isolated Arabidopsis null mutants of cpftsY, and performed biochemical comparisons with the Arabidopsis alb3 mutant. Both cpftsY and alb3 null mutants were seedling lethal on a synthetic medium lacking sucrose, whereas on a medium supplemented with sucrose, they were able to grow to later developmental stages, but were mostly infertile. cpftsY mutant plants had yellow leaves in which the levels of LHCPs were reduced to 10-33% compared with wild type. In contrast, alb3 had yellowish white leaves, and the LHCP levels were less than or equal to 10% of those of wild type. Intriguingly, whereas accumulation of the Sec and Tat machineries were normal in both mutants, the Sec pathway substrate Cyt f was more severely decreased in the cpftsY mutant than in alb3, which may indicate a functional link between cpFtsY and Sec translocation machinery. These results suggest that cpFtsY and Alb3 have essentially similar, but slightly distinct, contributions to thylakoid biogenesis.  相似文献   

13.
The nomenclature for genes for components of the photosynthetic membranes has been reviewed and updated. Newly discovered genes have been added to the existing convention for gene nomenclature. Genes designatedpetA throughpetI are described for components of the photosynthetic electron transport systems,psaA throughpsaK for photosystem I components, andpsbA throughpsbR for photosystem II, including the extrinsic polypeptides of the oxygen-evolving complex. References for representative examples of each gene are given.  相似文献   

14.
The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post‐translational modification termed palmitoylation. This acylation is catalysed by multi‐membrane spanning protein S‐acyl‐transferases (PATs) containing a catalytic Asp‐His‐His‐Cys (DHHC) motif, commonly referred to as DHHCs. Contrasting the redundancy observed in other organisms, several PATs are essential for T. gondii tachyzoite survival; 2 of them, TgDHHC2 and TgDHHC14 being IMC‐resident. Disruption of either of these TgDHHCs results in a rapid collapse of the IMC in the developing daughter cells leading to dramatic morphological defects of the parasites while the impact on the other organelles is limited to their localisation but not to their biogenesis. The acyl‐transferase activity of TgDHHC2 and TgDHHC14 is involved sequentially in the formation of the sub‐compartments of the IMC. Investigation of proteins known to be palmitoylated and localised to these sub‐compartments identified TgISP1/3 as well as TgIAP1/2 to lose their membrane association revealing them as likely substrates of TgDHHC2, while these proteins are not impacted by TgDHHC14 depletion.  相似文献   

15.
The process of chloroplast biogenesis requires a multitude of pathways and processes to establish chloroplast function. In cotyledons of seedlings, chloroplasts develop either directly from proplastids (also named eoplasts) or, if germinated in the dark, via etioplasts, whereas in leaves chloroplasts derive from proplastids in the apical meristem and are then multiplied by division. The snowy cotyledon 2, sco2, mutations specifically disrupt chloroplast biogenesis in cotyledons. SCO2 encodes a chloroplast-localized protein disulphide isomerase, hypothesized to be involved in protein folding. Analysis of co-expressed genes with SCO2 revealed that genes with similar expression patterns encode chloroplast proteins involved in protein translation and in chlorophyll biosynthesis. Indeed, sco2-1 accumulates increased levels of the chlorophyll precursor, protochlorophyllide, in both dark grown cotyledons and leaves. Yeast two-hybrid analyses demonstrated that SCO2 directly interacts with the chlorophyll-binding LHCB1 proteins, being confirmed in planta using bimolecular fluorescence complementation (BIFC). Furthermore, ultrastructural analysis of sco2-1 chloroplasts revealed that formation and movement of transport vesicles from the inner envelope to the thylakoids is perturbed. SCO2 does not interact with the signal recognition particle proteins SRP54 and FtsY, which were shown to be involved in targeting of LHCB1 to the thylakoids. We hypothesize that SCO2 provides an alternative targeting pathway for light-harvesting chlorophyll binding (LHCB) proteins to the thylakoids via transport vesicles predominantly in cotyledons, with the signal recognition particle (SRP) pathway predominant in rosette leaves. Therefore, we propose that SCO2 is involved in the integration of LHCB1 proteins into the thylakoids that feeds back on the regulation of the tetrapyrrole biosynthetic pathway and nuclear gene expression.  相似文献   

16.
Abstract. The structure of chloroplast membrane proteins and their organization into photosynthetically-active multimeric complexes is described. Extensive use has been made of information derived from gene sequencing and other biochemical studies to predict likely protein conformations. These predictions have been assimilated into structural models of the various thylakoid complexes. The enzymatic activities of the complexes have also been described and where possible related to individual polypeptides.  相似文献   

17.
Chloroplast inner-membrane proteins Tic40 and Tic110 are first imported from the cytosol into the chloroplast stroma, and subsequently reinserted from the stroma into the inner membrane. However, the mechanism of reinsertion remains unclear. Here we show that Tic40 itself is involved in this reinsertion process. When precursors of either Tic40 or a Tic110 C-terminal truncate, tpTic110-Tic110N, were imported into chloroplasts isolated from a tic40-null mutant, soluble Tic40 and Tic110N intermediates accumulated in the stroma of tic40-mutant chloroplasts, due to a slower rate of reinsertion. We further show that a larger quantity of soluble Tic21 intermediates also accumulated in the stroma of tic40-mutant chloroplasts. In contrast, inner-membrane insertion of the triose-phosphate/phosphate translocator was not affected by the tic40 mutation. Our data suggest that multiple pathways exist for the insertion of chloroplast inner-membrane proteins.  相似文献   

18.
In this paper, we report a novel pentatricopeptide repeat (PPR) protein gene in rice. PPR, a characteristic repeat motif consisted of tandem 35 amino acids, has been found in various biological systems including plant. Sequence analysis revealed that the gene designated OsPPR1 consisted of an open reading frame of 2433 nucleotides encoding 810 amino acids that include 11 PPR motifs. Blast search result indicated that the gene did not align with any of the characterized PPR genes in plant. The OsPPR1 gene was found to contain a putative chloroplast transit peptide in the N-terminal region, suggesting that the gene product targets to the chloroplast. Southern blot hybridization indicated that the OsPPR1 is the member of a gene family within the rice genome. Expression analysis and immunoblot analysis suggested that the OsPPR1 was accumulated mainly in rice leaf. Antisense transgenic strategy was used to suppress the expression of OsPPR1 and the resulted transgenic rice showed the typical phenotypes of chlorophyll-deficient mutants; albinism and lethality. Cytological observation using microscopy revealed that the antisense transgenic plant contained a significant defect in the chloroplast development. Taken together, the results suggest that the OsPPR1 is a nuclear gene of rice, encoding the PPR protein that might play a role in the chloroplast biogenesis. This is the first report on the PPR protein required for the chloroplast biogenesis in rice.  相似文献   

19.
Photosystem II (PSII) is highly susceptible to photoinhibition caused by environmental stimuli such as high light; therefore plants have evolved multifaceted mechanisms to efficiently protect PSII from photodamage. We previously published data suggesting that Maintenance of PSII under High light 1 (MPH1, encoded by AT5G07020), a PSII-associated proline-rich protein found in land plants, participates in the maintenance of normal PSII activity under photoinhibitory stress. Here we provide additional evidence for the role of MPH1 in protecting PSII against photooxidative damage. Two Arabidopsis thaliana mutants lacking a functional MPH1 gene suffer from severe photoinhibition relative to the wild-type plants under high irradiance light. The mph1 mutants exhibit significantly decreased PSII quantum yield and electron transport rate after exposure to photoinhibitory light. The mutants also display drastically elevated photodamage to PSII reaction center proteins after high-light treatment. These data add further evidence that MPH1 is involved in PSII photoprotection in Arabidopsis. MPH1 homologs are found across phylogenetically diverse land plants but are not detected in algae or prokaryotes. Taken together, these results suggest that MPH1 protein began to play a role in protecting PSII against excess light following the transition from aquatic to terrestrial conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号