首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The expression of vigilin was followed during chick embryonal development by in situ hybridization. Vigilin mRNA is abundantly expressed in tissues of mesenchymal and ectomesenchymal origin. The mesenchymal primordial cells of cartilage and bone did not show any significant, expression of vigilin. As tissue differentiation proceeded, vigilin mRNA levels increased in hyaline cartilage and in both endochondral as well as intramembranous bone. The results suggest that the expression of vigilin mRNA in cartilage- and bone-forming cells chondrocytes and osteobalsts, is dependent on the stage of development and cellular differentiation, although not a unique process of bone formation. Most striking is the correlation of the maximum vigilin mRNA expression in osteoblasts and hypertrophic chondrocytes to periods when cell-specific genes were highly transcribed and substantially translated, e.g., synthesis of procollagen and formation of extracellular matrix in bone and cartilage.Abbreviations DTT dithiotreitol - PBS phosphate-buffered saline - SSC standard saline citrate buffer  相似文献   

2.
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.  相似文献   

3.
We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.  相似文献   

4.
5.
Fibromodulin, a keratan-sulfate proteoglycan, was first isolated in articular cartilage and tendons. We have identified fibromodulin as a gene regulated during BMP-2-induced differentiation of a mouse prechondroblastic cell line. Because expression of fibromodulin during endochondral bone formation has not been studied, we examined whether selected cells of the chondrocytic and osteoblastic lineage expressed fibromodulin. Fibromodulin mRNA was detected in conditionally immortalized murine bone marrow stromal cells, osteoblasts, and growth plate chondrocytes, as well as in primary murine calvarial osteoblasts. We, therefore, investigated the temporo-spatial expression of fibromodulin in vivo during endochondral bone formation by in situ hybridization. Fibromodulin was first detected at 15.5 days post coitus (dpc) in the perichondrium and proliferating chondrocytes. Fibromodulin mRNA was also detected at 15.5 dpc in the bone collar and periosteum. At later time points fibromodulin was expressed in the primary spongiosa and the endosteum. To determine whether fibromodulin was expressed during intramembranous bone formation as well, in situ hybridization was performed on calvariae. Fibromodulin mRNA was present in calvarial osteoblasts from 15.5 dpc. These results demonstrate that fibromodulin is developmentally expressed in cartilage and bone cells during endochondral and intramembranous ossification. These findings suggest that this extracellular matrix protein plays a role in both endochondral and intramembranous bone formation.  相似文献   

6.
《Journal of morphology》2017,278(5):621-628
Two successive mechanisms have been described in perichondral ossification: (1) in static osteogenesis, mesenchymal cells differentiate into stationary osteoblasts oriented randomly, which differentiate into osteocytes in the same site; (2) in dynamic osteogenesis, mesenchymal cells differentiate into osteoblasts that are all oriented in the same direction and move back as they secrete collagen fibers. This study is aimed at testing the hypothesis that the ontogenetic sequence static then dynamic osteogenesis observed in the chicken and in the rabbit is homologous and was acquired by the last common ancestor of amniotes or at a more inclusive node. For this we analyze the developmental patterns of Pleurodeles (Caudata, Amphibia) and those of the lizard Pogona (Squamata, Lepidosauria). We processed Pleurodeles larvae and Pogona embryos, prepared thin and ultrathin sections of appendicular bones, and analyzed them using light and transmission electron microscopy. We show that static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles and Pogona . Therefore, the null hypothesis is rejected and according to the parsimony method the ontogenetic sequence observed in the chicken and in the rabbit are convergent. In Pleurodeles and Pogona dynamic osteogenesis occur without a previous rigid mineralized framework, whereas in the chicken and in the rabbit dynamic osteogenesis seems to take place over a mineralized support whether bone (in perichondral ossification) or calcified cartilage (in endochondral ossification). Interestingly, in typical dynamic osteogenesis, osteoblasts show an axis (basal nucleus—distal endoplasmic reticulum) perpendicular to the front of secreted unmineralized bone matrix, whereas in Pleurodeles and Pogona this axis is parallel to the bone matrix.  相似文献   

7.
An experimental model of leg lengthening was used to study the morphology of, the collagenous proteins present, and the collagen genes expressed in the regenerating tissue following 20% lengthening at four different distraction rates. At a distraction rate of 0.3 mm/day (8 weeks distraction), the regenerate consists of intramembranous bone and localized areas of fibrocartilage. At rates of 0.7 (4 weeks) and 1.3 mm/day (2 weeks), the bone that grows from the cut ends of the cortical bone is separated by fibrous tissue and cartilage is present. At 2.7 mm/day (1 week), only fibrous tissue and sparse bone are present. Type I collagen is present in the matrices around the cells expressing its mRNA and similarly, type II collagen is located around the chondrocytes. Type I collagen mRNA is expressed predominantly by the fibroblasts in the fibrous tissue, the bone surface cells and to a reduced extent by the osteocytes. Type II collagen mRNA is expressed by chondrocytes. The results suggest that osteoblasts and chondrocytes within the regenerate originate from the same pool of progenitor cells, and the differentiation of these cells and the expression of types I and II collagen genes are altered by different rates of distraction. These observations suggest that the optimal rate of distraction in the model is 0.7 mm/day.  相似文献   

8.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

9.
It is not known how gene expression of bone extracellular matrix molecules is controlled temporally and spatially, or how it is related with morphological differentiation of osteoblasts during embryonic osteogenesis in vivo. The present study was designed to examine gene expressions of type I collagen, osteonectin, bone sialoprotein, osteopontin, and osteocalcin during mandibular osteogenesis using in situ hybridization. Wistar rat embryos 13–20 days post coitum were used. The condensation of mesenchymal cells was formed in 14-day rat embryonic mandibles and expressed genes of pro-(I) collagen, osteonectin, bone sialoprotein and osteopontin. Cuboidal osteoblasts surrounding the uncalcified bone matrix were seen as early as in 15-day embryonic mandibles, while flat osteoblasts lining the surface of the calcified bone were seen from 16-day embryonic mandibles. Cuboidal osteoblasts expressed pro-1(I) collagen, osteonectin and bone sialoprotein intensely but osteopontin very weakly. In contrast, flat osteoblasts expressed osteopontin very strongly. Osteocytes expressed the extracellular matrix molecules actively, in particular, osteopontin. The present study demonstrated the distinct gene expression pattern of type I collagen, osteonectin, bone sialoprotein, osteopontin and osteocalcin during embryonic mandibular osteogenesis in vivo.  相似文献   

10.
11.
12.
13.
Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.  相似文献   

14.
15.
In this study we examine the extracellular role of galectin-3 (gal-3) in joint tissues. Following intra-articular injection of gal-3 or vehicle in knee joints of mice, histological evaluation of articular cartilage and subchondral bone was performed. Further studies were then performed using human osteoarthritic (OA) chondrocytes and subchondral bone osteoblasts, in which the effect of gal-3 (0 to 10 μg/ml) was analyzed. Osteoblasts were incubated in the presence of vitamin D3 (50 nM), which is an inducer of osteocalcin, encoded by an osteoblast terminal differentiation gene. Genes of interest mainly expressed in either chondrocytes or osteoblasts were analyzed with real-time RT-PCR and enzyme immunoassays. Signalling pathways regulating osteocalcin were analyzed in the presence of gal-3. Intra-articular injection of gal-3 induced knee swelling and lesions in both cartilage and subchondral bone. On human OA chondrocytes, gal-3 at 1 μg/ml stimulated ADAMTS-5 expression in chondrocytes and, at higher concentrations (5 and 10 μg/ml), matrix metalloproteinase-3 expression. Experiments performed with osteoblasts showed a weak but bipolar effect on alkaline phosphatase expression: stimulation at 1 μg/ml or inhibition at 10 μg/ml. In the absence of vitamin D3, type I collagen alpha 1 chain expression was inhibited by 10 μg/ml of gal-3. The vitamin D3induced osteocalcin was strongly inhibited in a dose-dependent manner in the presence of gal-3, at both the mRNA and protein levels. This inhibition was mainly mediated by phosphatidylinositol-3-kinase. These findings indicate that high levels of extracellular gal-3, which could be encountered locally during the inflammatory process, have deleterious effects in both cartilage and subchondral bone tissues.  相似文献   

16.

Activin E, a member of the TGF-β super family, is a protein dimer of mature inhibin βE subunits. Recently, it is reported that hepatic activin E may act as a hepatokine that alter whole body energy/glucose metabolism in human. However, orthologues of the activin E gene have yet to be identified in lower vertebrates, including fish. Here, we cloned the medaka (Oryzias latipes) activin E cDNA from liver. Among all the mammalian inhibin β subunits, the mature medaka activin E amino acid sequence shares the highest homology with mammalian activin E. Recombinant expression studies suggest that medaka activin E, the disulfide–bound mature form of mature inhibin βE subunits, may exert its effects in a way similar to that in mammals. Although activin E mRNA is predominantly expressed in liver in mammals, it is ubiquitously expressed in medaka tissues. Since expression in the liver was enhanced after a high fat diet, medaka activin E may be associated with energy/glucose metabolism, as shown in mice and human.

  相似文献   

17.
We have used c-Fos transgenic mice which develop osteosarcomas to determine the expression patterns of cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors (CKIs) in different bone cell populations in order to define the potential mechanisms of c-Fos transformation. Immunohistochemical analysis in embryonic and early postnatal bone demonstrated that cyclin E and its kinase partner CDK2 were expressed specifically in bone-forming osteoblasts. Cyclin D1 expression was absent despite high levels of CDK4 and CDK6, and the CKI p27 was expressed in chondrocytes, osteoclasts, and at lower levels in osteoblasts. Following activation of the c-fos transgene in vivo and before overt tumor formation, cyclin D1 expression increased dramatically and was colocalized with exogenous c-Fos protein specifically in osteoblasts and chondrocytes, but not in osteoclasts. Prolonged activation of c-Fos resulted in osteosarcoma formation wherein the levels of cyclin D1, cyclin E, and CDKs 2, 4, and 6 were high in a wide spectrum of malignant cell types, especially in transformed osteoblasts. The CKI p27 was expressed at very high levels in bone-resorbing osteoclasts, and to a lesser extent in chondrocytes and osteoblasts. These in vivo observations suggest that cyclin D1 may be a target for c-Fos action and that elevation of cyclin D1 in osteoblasts which already express cyclin E/CDK2 and the cyclin D1 partners CDKs 4 and 6, may predispose cells to uncontrolled cell growth leading to osteosarcoma development. This study implicates altered cell cycle control as a potential mechanism through which c-Fos causes osteoblast transformation and bone tumor formation. Dev. Genet. 22:386–397, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
19.
The expression of dentin matrix protein 1 (Dmp1) mRNA has been compared with that of type I collagen and osteocalcin mRNAs during bone formation in the rat mandible, using in situ hybridization. At embryonic day 15 (E15), type I collagen and osteocalcin mRNAs were expressed by the majority of newly-differentiated osteoblasts attached to unmineralized bone matrices, whereas Dmp1 mRNA expression was confined to only a few osteoblasts. Expression of these genes increased as the number of osteoblasts increased in specimens from E16 to E18. At E20, expression of Dmp1, type I collagen and osteocalcin was also observed in osteocytes. Dmp1 expression continued in osteocytes as they matured up to the 90-day-old specimens, whereas type I collagen and osteocalcin expression in osteocytes almost disappeared at 30 days of postnatal life. In contrast, osteoblasts continued to express type I collagen and osteocalcin in 90-day-old rats, but transiently expressed Dmp1 mRNA, which was seen in the minority of osteoblasts at 14 days of postnatal life. These data show that the developmental expression patterns of Dmp1 in osteogenic differentiation differ from those of type I collagen and osteocalcin, and Dmp1 appears to be expressed by osteocytes throughout ossification in the skeleton. These observations indicate that Dmp1 may serve unique biological functions in osteocyte and bone metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号