首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Bacteriophage P22 forms an isometric capsid during normal assembly, yet when the coat protein (CP) is altered at a single site, helical structures (polyheads) also form. The structures of three distinct polyheads obtained from F170L and F170A variants were determined by cryo-reconstruction methods. An understanding of the structures of aberrant assemblies such as polyheads helps to explain how amino acid substitutions affect the CP, and these results can now be put into the context of CP pseudo-atomic models. F170L CP forms two types of polyhead and each has the CP organized as hexons (oligomers of six CPs). These hexons have a skewed structure similar to that in procapsids (precursor capsids formed prior to dsDNA packaging), yet their organization differs completely in polyheads and procapsids. F170A CP forms only one type of polyhead, and though this has hexons organized similarly to hexons in F170L polyheads, the hexons are isometric structures like those found in mature virions. The hexon organization in all three polyheads suggests that nucleation of procapsid assembly occurs via a trimer of CP monomers, and this drives formation of a T = 7, isometric particle. These variants also form procapsids, but they mature quite differently: F170A expands spontaneously at room temperature, whereas F170L requires more energy. The P22 CP structure along with scaffolding protein interactions appear to dictate curvature and geometry in assembled structures and residue 170 significantly influences both assembly and maturation.  相似文献   

2.
Phage P22 wild-type (WT) coat protein does not require GroEL/S to fold but temperature-sensitive-folding (tsf) coat proteins need the chaperone complex for correct folding. WT coat protein and all variants absolutely require P22 scaffolding protein, an assembly chaperone, to assemble into precursor structures termed procapsids. Previously, we showed that a global suppressor (su) substitution, T1661, which rescues several tsf coat protein variants, functioned by inducing GroEL/S. This led to an increased formation of tsf:T1661 coat protein:GroEL complexes compared with the tsf parents. The increased concentration of complexes resulted in more assembly-competent coat proteins because of a shift in the chaperone-driven kinetic partitioning between aggregation-prone intermediates toward correct folding and assembly. We have now investigated the folding and assembly of coat protein variants that carry a different global su substitution, F170L. By monitoring levels of phage production in the presence of a dysfunctional GroEL we found that tsf:F170L proteins demonstrate a less stringent requirement for GroEL. Tsf:F170L proteins also did not cause induction of the chaperones. Circular dichroism and tryptophan fluorescence indicate that the native state of the tsf: F170L coat proteins is restored to WT-like values. In addition, native acrylamide gel electrophoresis shows a stabilized native state for tsf:F170L coat proteins. The F170L su substitution also increases procapsid production compared with their tsf parents. We propose that the F170L su substitution has a decreased requirement for the chaperones GroEL and GroES as a result of restoring the tsf coat proteins to a WT-like state. Our data also suggest that GroEL/S can be induced by increasing the population of unfolding intermediates.  相似文献   

3.
Initiation of P22 procapsid assembly in vivo   总被引:7,自引:0,他引:7  
The procapsids of all double-stranded DNA phages have a unique portal vertex, which is the locus of DNA packaging and DNA injection. Procapsid assembly is also initiated at this vertex, which is defined by the presence of a cyclic dodecamer of the portal protein. Assembly of the procapsid shell of phage P22 requires the gene 5 coat protein and the gene 8 scaffolding protein. We report here that removal of gene product (gp) 1 portal protein of P22 by mutation does not slow the rate of polymerization of coat and scaffolding subunits into shells, indicating that the portal ring is dispensable for shell initiation. Mutant scaffolding subunits specified by tsU172 copolymerize with coat subunits into procapsids at restrictive temperature, and also correctly autoregulate their synthesis. However, the shell structures formed from the temperature-sensitive scaffolding subunits fail to incorporate the portal ring and the three minor DNA injection proteins. This mutation identifies a domain of the scaffolding protein specifically involved in organization of the portal vertex. The results suggest that it is a complex of the scaffolding protein that initiates procapsid assembly and organizes the portal ring.  相似文献   

4.
Coat and scaffolding subunits derived from P22 procapsids have been purified in forms that co-assemble rapidly and efficiently into icosahedral shells in vitro under native conditions. The half-time for this reaction is approximately five minutes at 21 degrees C. The in vitro reaction exhibits the regulated features observed in vivo. Neither coat nor scaffolding subunits alone self-assemble into large structures. Upon mixing the subunits together they polymerize into procapsid-like shells with the in vivo coat and scaffolding protein composition. The subunits in the purified coat protein preparations are monomeric. The scaffolding subunits appear to be monomeric or dimeric. These results confirm that P22 procapsid formation does not proceed through the assembly of a core of scaffolding, which then organizes the coat, but requires copolymerization of coat and scaffolding. To explore the mechanisms of the control of polymerization, shell assembly was examined as a function of the input ratio of scaffolding to coat subunits. The results indicated that scaffolding protein was required for both initiation of shell assembly and continued polymerization. Though procapsids produced in vivo contain about 300 molecules of scaffolding, shells with fewer subunits could be assembled down to a lower limit of about 140 scaffolding subunits per shell. The overall results of these experiments indicate that coat and scaffolding subunits must interact in both the initiation and the growth phases of shell assembly. However, it remains unclear whether during growth the coat and scaffolding subunits form a mixed oligomer prior to adding to the shell or whether this occurs at the growing edge.  相似文献   

5.
Assembly of certain classes of bacterial and animal viruses requires the transient presence of molecules known as scaffolding proteins, which are essential for the assembly of the precursor procapsid. To assemble a procapsid of the proper size, each viral coat subunit must adopt the correct quasiequivalent conformation from several possible choices, depending upon the T number of the capsid. In the absence of scaffolding protein, the viral coat proteins form aberrantly shaped and incorrectly sized capsids that cannot package DNA. Although scaffolding proteins do not form icosahedral cores within procapsids, an icosahedrally ordered coat/scaffolding interaction could explain how scaffolding can cause conformational differences between coat subunits. To identify the interaction sites of scaffolding protein with the bacteriophage P22 coat protein lattice, we have determined electron cryomicroscopy structures of scaffolding-containing and scaffolding-lacking procapsids. The resulting difference maps suggest specific interactions of scaffolding protein with only four of the seven quasiequivalent coat protein conformations in the T = 7 P22 procapsid lattice, supporting the idea that the conformational switching of a coat subunit is regulated by the type of interactions it undergoes with the scaffolding protein. Based on these results, we propose a model for P22 procapsid assembly that involves alternating steps in which first coat, then scaffolding subunits form self-interactions that promote the addition of the other protein. Together, the coat and scaffolding provide overlapping sets of binding interactions that drive the formation of the procapsid.  相似文献   

6.
Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.  相似文献   

7.
J Lanman  R Tuma  P E Prevelige 《Biochemistry》1999,38(44):14614-14623
The bacteriophage P22 serves as a model for assembly of icosahedral dsDNA viruses. The P22 procapsid, which constitutes the precursor for DNA packaging, is built from 420 copies of a single coat protein with the aid of stoichiometric amounts of scaffolding protein. Upon DNA entry, the procapsid shell expands and matures into a stable virion. It was proposed that expansion is mediated by hinge bending and domain movement. We have used limited proteolysis to map the dynamic stability of the coat protein domain structures. The coat protein monomer is susceptible to proteolytic digestion, but limited proteolysis by small quantities of elastase or chymotrypsin yielded two metastable fragments (domains). The N-terminal domain (residues 1-180) is linked to the C-terminal domain (residues 205-429) by a protease-susceptible loop (residues 180-205). The two domains remain associated after the loop cleavage. Although only a small change of secondary structure results from the loop cleavage, both tertiary interdomain contacts and subunit thermostability are diminished. The intact loop is also required for assembly of the monomeric coat protein into procapsids. Upon assembly, coat protein becomes largely protease-resistant, baring cleavage within the loop region of about half of the subunits. Loop cleavage decreases the stability of the procapsids and facilitates heat-induced shell expansion. Upon expansion, the loop becomes protease-resistant. Our data suggest the loop region becomes more ordered during assembly and maturation and thereby plays an important role in both of these stages.  相似文献   

8.
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.  相似文献   

9.
The assembly of the precursor shells of bacteriophage P22 entails the co-polymerization of gene 5 coat protein with gene 8 scaffolding protein into double shell structures. During DNA encapsidation, the inner shell of scaffolding molecules dissociates and exits from the prohead. These molecules then recycle, catalyzing the assembly of newly synthesized coat protein to form new proheads (King and Casjens, 1974).Although gene 5 and gene 8 are adjacent on the phage chromosome, we find that the synthesis of the two proteins is differentially regulated. In productively infected cells, scaffolding protein is synthesized at a low rate relative to the coat protein. In contrast, cells that are infected with mutants blocked in DNA packaging and accumulate precursor shells synthesize scaffolding protein at a much higher rate. If a mutation is introduced into the coat protein gene, however, preventing shell assembly, the rate of scaffolding protein synthesis decreases to less than the wild-type rate.The experiments are consistent with models in which either continued synthesis of scaffolding protein depends upon co-polymerization with coat subunits, or soluble scaffolding subunits (but not assembled subunits) depress their own further synthesis. The finding that amber fragments of the scaffolding protein are synthesized at a very low rate is inconsistent with the second model. There is evidence, however, that fragments of the protein may have regulatory activity.The regulatory circuit couples scaffolding protein synthesis to morphogenesis. Gene dosage experiments show that regulation results in the maintenance of coat and scaffolding subunits in the proper ratio for shell assembly.  相似文献   

10.
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.  相似文献   

11.
Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically developed to analyze assembly of spherical viruses. Phage P22 procapsids are the product of the co-assembly of 420 molecules of coat protein and approximately 100-300 molecules of scaffolding protein. Scaffolding protein serves as an assembly chaperone and is not part of the final mature capsid, but is essential for proper procapsid assembly. Here we show that scaffolding protein also affects the thermodynamics of assembly, and for the first time this quantitative analysis has been performed on a virus composed of more than one type of protein subunit. Purified coat and scaffolding proteins were mixed in varying ratios in vitro to form procapsids. The reactions were allowed to reach equilibrium and the proportion of the input protein assembled into procapsids or remaining as free subunits was determined by size exclusion chromatography and SDS-PAGE. The results were used to calculate the free energy contributions for individual coat and scaffolding proteins. Each coat protein subunit was found to contribute -7.2(+/-0.1)kcal/mol and each scaffolding protein -6.1(+/-0.2)kcal/mol to the stability of the procapsid. Because each protein interacts with two or more neighbors, the pair-wise energies are even less. The weak protein interactions observed in the assembly of procapsids are likely important in the control of nucleation, since an increase in affinity between coat and scaffolding proteins can lead to kinetic traps caused by the formation of too many nuclei. In addition, we find that adjusting the molar ratio of scaffolding to coat protein can alter the assembly product. When the scaffolding protein concentration is low relative to coat protein, there is a correspondingly low yield of proper procapsids. When the relative concentration is very high, too many nuclei form, leading to kinetically trapped assembly intermediates.  相似文献   

12.
P E Prevelige  Jr  D Thomas    J King 《Biophysical journal》1993,64(3):824-835
The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step.  相似文献   

13.
In the morphogenesis of double stranded DNA phages, a precursor protein shell empty of DNA is first assembled and then filled with DNA. The assembly of the correctly dimensioned precursor shell (procapsid) of Salmonella bacteriophage P22 requires the interaction of some 420 coat protein subunits with approximately 200 scaffolding protein subunits to form a double shelled particle with the scaffolding protein on the inside. In the course of DNA packaging, all of the scaffolding protein subunits exit from the procapsid and participate in further rounds of procapsid assembly (King and Casjens. 1974. Nature (Lond.). 251:112-119). To study the mechanism of shell assembly we have purified the coat and scaffolding protein subunits by selective dissociation of isolated procapsids. Both proteins can be obtained as soluble subunits in Tris buffer at near neutral pH. The coat protein sedimented in sucrose gradients as a roughly spherical monomer, while the scaffolding protein sedimented as if it were an elongated monomer. When the two proteins were mixed together in 1.5 M guanidine hydrochloride and dialyzed back to buffer at room temperature, procapsids formed which were very similar in morphology, sedimentation behavior, and protein composition to procapsids formed in vivo. Incubation of either protein alone under the same conditions did not yield any large structures. We interpret these results to mean that the assembly of the shell involves a switching of both proteins from their nonaggregating to their aggregating forms through their mutual interaction. The results are discussed in terms of the general problem of self-regulated assembly and the control of protein polymerization in morphogenesis.  相似文献   

14.
The coat and scaffolding proteins of bacteriophage P22 procapsids have been purified in soluble form. By incubating both purified proteins with a mutant-infected cell extract lacking procapsids, but competent for DNA packaging in vitro (Poteete et al., 1979), we were able to obtain assembly of biologically active procapsids in vitro. The active species for complementation in vitro in both protein preparations copurified with the soluble subunits, indicating that these subunits represent precursors in procapsid polymerization.When the purified coat and scaffolding subunits were mixed directly, they polymerized into double-shelled procapsid-like structures during dialysis from 1.5 m-guanidine hydrochloride to buffer. When dialyzed separately under the same conditions, the scaffolding subunits did not polymerize but remained as soluble subunits, as did most of the coat subunits. No evidence was found for self-assembly of the scaffolding protein in the absence of the coat protein.The unassembled coat subunits sedimented at 3.9 S and the unassembled scaffolding subunits sedimented at 2.4 S in sucrose gradients. The Stokes' radius, determined by gel filtration, was 25 Å for the coat subunits and 34 Å for the scaffolding subunits. These results indicate that the scaffolding subunits are relatively slender elongated molecules, whereas the coat subunits are more globular.The experiments suggest that the procapsid is built by copolymerization of the two protein species. Their interaction on the growing surface of the shell structure, and not in solution, appears to regulate successive binding interactions.  相似文献   

15.
16.
Assembly of bacteriophage P22 procapsids has long served as a model for assembly of spherical viruses. Historically, assembly of viruses has been viewed as a non-equilibrium process. Recently alternative models have been developed that treat spherical virus assembly as an equilibrium process. Here we have investigated whether P22 procapsid assembly reactions achieve equilibrium or are irreversibly trapped. To assemble a procapsid-like particle in vitro, pure coat protein monomers are mixed with scaffolding protein. We show that free subunits can exchange with assembled structures, indicating that assembly is a reversible, equilibrium process. When empty procapsid shells (procapsids with the scaffolding protein stripped out) were diluted so that the concentration was below the dissociation constant ( approximately 5 microM) for coat protein monomers, free monomers were detected. The released monomers were assembly-competent; when NaCl was added to metastable partial capsids that were aged for an extended period, the released coat subunits were able to rapidly re-distribute from the partial capsids and form whole procapsids. Lastly, radioactive monomeric coat subunits were able to exchange with the subunits from empty procapsid shells. The data presented illustrate that coat protein monomers are able to dissociate from procapsids in an active state, that assembly of procapsids is consistent with reactions at equilibrium and that the reaction follows the law of mass action.  相似文献   

17.
The scaffolding proteins of double-stranded DNA viruses are required for the polymerization of capsid subunits into properly sized closed shells but are absent from the mature virions. Phage P22 scaffolding subunits are elongated 33-kDa molecules that copolymerize with coat subunits into icosahedral precursor shells and subsequently exit from the precursor shell through channels in the procapsid lattice to participate in further rounds of polymerization and dissociation. Purified scaffolding subunits could be refolded in vitro after denaturation by high temperature or guanidine hydrochloride solutions. The lack of coincidence of fluorescence and circular dichroism signals indicated the presence of at least one partially folded intermediate, suggesting that the protein consisted of multiple domains. Proteolytic fragments containing the C terminus were competent for copolymerization with capsid subunits into procapsid shells in vitro, whereas the N terminus was not needed for this function. Proteolysis of partially denatured scaffolding subunits indicated that it was the capsid-binding C-terminal domain that unfolded at low temperatures and guanidinium concentrations. The minimal stability of the coat-binding domain may reflect its role in the conformational switching needed for icosahedral shell assembly.  相似文献   

18.
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site.  相似文献   

19.
Summary The kinetics of the assembly of polyheads produced by infecting Escherichia coli B with T4 amber mutants in gene 20 was measured and compared with the growth of wild type phage. The rates of production of polyheads and of phages were found to be about the same. The final yields in lysis-inhibited cells were approximately 600 phage equivalents per infected bacterium. The initial appearance of polyheads is delayed 15–20 min compared with wild type phage production, although it is not due to a reduced rate of protein synthesis in mutant-infected cells. In such cells an accumulation of precursor protein for polyhead is thus caused. This pool is about three times larger than the one measured during wild type infection. The delay is extended if the amount of subunits available for polyhead formation is reduced. We conclude that the initiation of polyhead assembly depends upon the subunit concentration. Polyhead assembly continues at the same rate for several minutes when protein synthesis is inhibited with chloramphenicol at different times. The maturable polyhead precursor was estimated by measuring the amount of polyheads assembled after adding the drug, and it was found that 25% of the total protein pool was converted into polyheads. Using a new technique for the observation of single cells with the electron microscope we found that polyheads are arranged in bundles oriented parallel to the long axis of the cell. The average length of polyheads is roughly the same at all times during their formation.  相似文献   

20.
Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter ≈ 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibrium (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号