首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed‐shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ~26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering.  相似文献   

2.
Examining the targets of selection in crop species and their wild and weedy relatives sheds light on the evolutionary processes underlying differentiation of cultivars from progenitor lineages. On one hand, human‐mediated directional selection in crops favours traits associated with the streamlining of controllable and predictable monoculture practices alongside selection for desired trait values. On the other hand, natural selection in wild and especially weedy relatives presumably favours trait values that increase the probability of escaping eradication. Gene flow between crops and wild species may also counter human‐mediated selection, promoting the evolution and persistence of weedy forms. In this issue, two studies from a group of collaborators examine diversity and divergence patterns of genes underlying two traits associated with red rice (Oryza sp.), the conspecific relative of cultivated rice (Oryza sativa) that is a non‐native weed (see Fig. 1 ). In the first study by Gross et al. (2010) , genetic variation in the major gene underlying the hallmark red pigmentation characterizing most weedy rice (Rc) is found to have a pattern consistent with non‐reversion from U.S. cultivated rice (i.e. the cultivar did not ‘go feral’). This suggests that U.S. weedy rice is not an escaped lineage derived from U.S. cultivated rice populations; weedy rice likely differentiated prior to the selective sweep occurred in this gene within cultivated rice populations. Using the major seed shattering locus sh4 gene and the neighbouring genomic region, Thurber et al. (2010) track the molecular evolutionary history of the high shattering phenotype, a trait contributing dramatically to the success of crop selection in cultivated rice as well as the persistence and expansion of weedy red rice. In this study, the shared fixation of a sh4 mutation in both cultivated rice and weedy rice indicates that weedy rice arose subsequent to the strong selective sweep leading to significant reduction in seed shattering in cultivated rice.
Figure 1 Open in figure viewer PowerPoint A weedy, brown hulled red rice individual with long awns surrounded by a field of cultivated rice (photo by A. Lawton‐Rauh).  相似文献   

3.
Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild‐to‐weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed‐shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations.  相似文献   

4.
Seed shattering is one of the main traits related with the domestication of cultivated rice and with the invasiveness and persistence of weedy rice. Two independent studies in 2006 have indicated that qSH1 in Japonica and Sh4 in Indica rice are major genes governing this trait. However, a wide variation of seed shattering occurs in weedy rice ecotypes from the same geographic region and even within the same ecotype. The aim of this study was to evaluate the nucleotide variability of known and putative genes related to seed shattering in cultivated rice and to identify and validate new genes related to this trait in weedy rice. The qSH1 gene was not associated with seed shattering in the evaluated genotypes. The nucleotide variability of the genes Os01g0849100 and Os08g0512400, previously identified based on a genome‐wide resequencing study, was related to seed shattering in rice. The nucleotide variability of three single nucleotide polymorphisms (SNPs) of the OsXTH8 gene, which is related to cell wall biosynthesis, was not associated with seed shattering. However, the high expression of this gene was related to the occurrence of this trait. This study evaluated jointly a series of genes involved in rice seed shattering and indicated that the genes OsXTH8, Os08g0512400 and Os01g0849100 are important for the regulation of this trait in weedy rice in addition to previously described genes. Seed shattering in weedy rice has a more complex regulation than in cultivated rice where few major genes were identified.  相似文献   

5.
Seed shattering is an evolutionary trait that is essential to the survival of wild and weedy rice. Discovery of the qSH1 gene in rice subspecies Japonica and Sh4 in the rice subspecies Indica indicated the possibility that seed shattering is governed by major genes in a qualitative manner. However, observation of the large variability of seed shattering in weedy rice has led us to hypothesise that other genes related to abscission layer integrity could also be important in the regulation of seed shattering in rice. Gene expression 10 days after pollination and nucleotide composition revealed that qSH1 and Sh4 that are described as major players in seed shattering were not important in weedy rice. High expression of the gene OsCPL1 was positively associated with the occurrence of high seed shattering in weedy rice, which did not concur in previous studies of cultivated rice. This result is related to the absence of four SNPs and an indel in the OsCPL1 gene in weedy rice that are related to seed shattering in previous studies. Analysis of the expression of six genes related to cell wall synthesis/degradation revealed the importance of the genes OsXTH8 and OsCel9D in seed shattering in weedy rice. Therefore, in addition to qSH1 and Sh4, the genes OsCPL1, OsXTH8 and OsCel9D should be considered in studies of rice evolution and in the development of mitigation approaches of gene flow in transgenic rice.  相似文献   

6.

Background  

Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution.  相似文献   

7.
Growth-related traits, such as greater height, greater biomass, faster growth rate and early flowering, are thought to enhance competitiveness of agricultural weeds. However, weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.), displays variation for growth traits. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Through a common garden experiment, we investigated whether growth trait divergence has occurred among U.S. weeds and their putative cultivated progenitors. We also determined polymorphism patterns in the growth candidate gene, SD1, to assess its possible role in the evolution of divergent phenotypes. We found considerable growth trait variation among weed groups, suggesting that growth trait convergence is not evident among weedy populations. Phenotypic divergence of weedy rice from cultivated ancestors is most apparent for flowering time. Introgression of a chromosomal block containing the SD1 allele from tropical japonica, the predominant U.S. rice cultivar, was detected in one weedy rice population and is associated with a change in growth patterns in this group. This study demonstrates the role of introgressive hybridization in evolutionary divergence of an important weed.  相似文献   

8.
The two independent domestication events in the genus Oryza that led to African and Asian rice offer an extremely useful system for studying the genetic basis of parallel evolution. This system is also characterized by parallel de‐domestication events, with two genetically distinct weedy rice biotypes in the US derived from the Asian domesticate. One important trait that has been altered by rice domestication and de‐domestication is hull colour. The wild progenitors of the two cultivated rice species have predominantly black‐coloured hulls, as does one of the two U.S. weed biotypes; both cultivated species and one of the US weedy biotypes are characterized by straw‐coloured hulls. Using Black hull 4 (Bh4) as a hull colour candidate gene, we examined DNA sequence variation at this locus to study the parallel evolution of hull colour variation in the domesticated and weedy rice system. We find that independent Bh4‐coding mutations have arisen in African and Asian rice that are correlated with the straw hull phenotype, suggesting that the same gene is responsible for parallel trait evolution. For the U.S. weeds, Bh4 haplotype sequences support current hypotheses on the phylogenetic relationship between the two biotypes and domesticated Asian rice; straw hull weeds are most similar to indica crops, and black hull weeds are most similar to aus crops. Tests for selection indicate that Asian crops and straw hull weeds deviate from neutrality at this gene, suggesting possible selection on Bh4 during both rice domestication and de‐domestication.  相似文献   

9.
10.
Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the ‘agricultural weed syndrome’, making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed‐crop pairs, but are not shared among all weed‐crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms.  相似文献   

11.
It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. sativa cv. Nipponbare (a recurrent parent) and O. rufipogon acc. W630 (a donor parent). As a result, two strong QTLs were detected on chromosomes 1 and 4, and they were found to be identical to the two major seed-shattering loci, qSH1 and sh4, respectively. The allelic interaction at these loci was further examined using two sets of backcross populations having reciprocal genetic backgrounds, cultivated and wild. In the genetic background of cultivated rice, the wild qSH1 allele has stronger effect on seed shattering than that of sh4. In addition, the wild alleles at both qSH1 and sh4 loci showed semi-dominant effects. On the other hand, in the genetic background of wild rice, non-shattering effects of Nipponbare alleles at both loci were examined to inspect rice domestication from a viewpoint of seed shattering. It was serendipitous that the backcross plants individually having Nipponbare homozygous alleles at either shattering locus (qSH1 or sh4) shed all the seeds. This fact strongly indicates that the non-shattering behavior was not obtained by a single mutation in the genetic background of wild rice. Probably, some other minor genes are still associated with the formation or activation of abscission layer, which enhance the seed shattering.  相似文献   

12.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

13.
Many different crop species were selected for a common suite of ‘domestication traits’, which facilitates their use for studies of parallel evolution. Within domesticated rice (Oryza sativa), there has also been independent evolution of weedy strains from different cultivated varieties. This makes it possible to examine the genetic basis of parallel weed evolution and the extent to which this process occurs through shared genetic mechanisms. We performed comparative QTL mapping of weediness traits using two recombinant inbred line populations derived from crosses between an indica crop variety and representatives of each of the two independently evolved weed strains found in US rice fields, strawhull (S) and blackhull awned (B). Genotyping‐by‐sequencing provided dense marker coverage for linkage map construction (average marker interval <0.25 cM), with 6016 and 13 730 SNPs mapped in F5 lines of the S and B populations, respectively. For some weediness traits (awn length, hull pigmentation and pericarp pigmentation), QTL mapping and sequencing of underlying candidate genes confirmed that trait variation was largely attributable to individual loci. However, for more complex quantitative traits (including heading date, panicle length and seed shattering), we found multiple QTL, with little evidence of shared genetic bases between the S and B populations or across previous studies of weedy rice. Candidate gene sequencing revealed causal genetic bases for 8 of 27 total mapped QTL. Together these findings suggest that despite the genetic bottleneck that occurred during rice domestication, there is ample genetic variation in this crop to allow agricultural weed evolution through multiple genetic mechanisms.  相似文献   

14.
Lin Z  Griffith ME  Li X  Zhu Z  Tan L  Fu Y  Zhang W  Wang X  Xie D  Sun C 《Planta》2007,226(1):11-20
  相似文献   

15.
Rice (Oryza sativa L.) is widely cultivated around the world and is known to be domesticated from its wild form, O. rufipogon. A loss of seed shattering is one of the most obvious phenotypic changes selected for during rice domestication. Previously, three seed-shattering loci, qSH1, sh4, and qSH3 were reported to be involved in non-shattering of seeds of Japonica-type cultivated rice, O. sativa cv. Nipponbare. In this study, we focused on non-shattering characteristics of O. sativa Indica cv. IR36 having functional allele at qSH1. We produced backcross recombinant inbred lines having chromosomal segments from IR36 in the genetic background of wild rice, O. rufipogon W630. Histological and quantitative trait loci analyses of abscission layer formation were conducted. In the analysis of quantitative trait loci, a strong peak was observed close to sh4. We, nevertheless, found that some lines showed complete abscission layer formation despite carrying the IR36 allele at sh4, implying that non-shattering of seeds of IR36 could be regulated by the combination of mutations at sh4 and other seed-shattering loci. We also genotyped qSH3, a recently identified seed-shattering locus. Lines that have the IR36 alleles at sh4 and qSH3 showed inhibition of abscission layer formation but the degree of seed shattering was different from that of IR36. On the basis of these results, we estimated that non-shattering of seeds in early rice domestication involved mutations in at least three loci, and these genetic materials produced in this study may help to identify novel seed-shattering loci.  相似文献   

16.
Weedy forms of crop species infest agricultural fields worldwide and are a leading cause of crop losses, yet little is known about how these weeds evolve. Red rice (Oryza sativa), a major weed of cultivated rice fields in the US, is recognized by the dark‐pigmented grain that gives it its common name. Studies using neutral molecular markers have indicated a close relationship between US red rice and domesticated rice, suggesting that the weed may have originated through reversion of domesticated rice to a feral form. We have tested this reversion hypothesis by examining molecular variation at Rc, the regulatory gene responsible for grain pigmentation differences between domesticated and wild rice. Loss‐of‐function mutations at Rc account for the absence of proanthocyanidin pigments in cultivated rice grains, and the major rc domestication allele has been shown to be capable of spontaneous reversion to a functional form through additional mutations at the Rc locus. Using a diverse sample of 156 weedy, domesticated and wild Oryzas, we analysed DNA sequence variation at Rc and its surrounding 4 Mb genomic region. We find that reversion of domestication alleles does not account for the pigmented grains of weed accessions; moreover, we find that haplotypes characterizing the weed are either absent or very rare in cultivated rice. Sequences from genomic regions flanking Rc are consistent with a genomic footprint of the rc selective sweep in cultivated rice, and they are compatible with a close relationship of red rice to Asian Oryzas that have never been cultivated in the US.  相似文献   

17.
通过分析籼稻93-11和粳稻培矮64S的叶绿体全基因组,优化和构建了籼粳分化的叶绿体分子标记ORF100和ORF29-TrnCGCA的多重PCR。应用这个多重PCR对200余份世界各地杂草稻和其它水稻材料进行分析。结果表明:杂草稻中有明显的叶绿体籼粳分化,表现出明显的地域性,且与传统的中国栽培稻的南籼北粳能较好的对应。推测粳型杂草稻可能是栽培稻突变或粳型水稻(作母本)与其它类型水稻材料杂交而形成的。  相似文献   

18.
Summary Three weedy amaranths (Amarantkus hybridus, A. retroflexus and A. powellii) from nine California sites, three domesticated species (A. caudatus, A. hypochondriacus and A. cruentus) from the USDA plant inventory as well as other sources and a naturally-occurring crop-weed hybrid were studied for numerical taxonomy using morphological and allozyme variation data. The crop and weedy species groups were easily separated and the hybrid populations were found to be intermediate. Surprisingly, very little intraspecific variation was present. Crop, weed and hybrid amaranths were also compared for their yielding ability, harvest index, seed efficiency of grain production and protein, popping quality and other agronomic traits. Although field plot yields were similar among the three groups of species (700 Kg/ha seed without fertilizer treatment and water, ranging to 3000 Kg/ha with fertilizer applications of 170 Kg N/ha, and abundant water), the harvest index of the weedy group was much higher (25–40%) than the domesticated species (10–15%). The allocation of biomass to seed production is positively correlated with seed yield in the domesticated but not in the weedy types, whereas the percentages of biomass as stem material and as seeds are negatively correlated. Several weedy and crop characteristics together should provide the basis of new improved cultivars through genetic recombination and selection.  相似文献   

19.
Control of weeds in cultivated crops is a pivotal component in successful crop production allowing higher yield and higher quality. In rice‐growing regions worldwide, weedy rice (Oryza sativa f. spontanea Rosh.) is a weed related to cultivated rice which infests rice fields. With populations across the globe evolving a suite of phenotypic traits characteristic of weeds and of cultivated rice, varying hypotheses exist on the origin of weedy rice. Here, we investigated the genetic diversity and possible origin of weedy rice in California using 98 simple sequence repeat (SSR) markers and an Rc gene‐specific marker. By employing phylogenetic clustering analysis, we show that four to five genetically distinct biotypes of weedy rice exist in California. Analysis of population structure and genetic distance among individuals reveals diverse evolutionary origins of California weedy rice biotypes, with ancestry derived from indica, aus, and japonica cultivated rice as well as possible contributions from weedy rice from the southern United States and wild rice. Because this diverse parentage primarily consists of weedy, wild, and cultivated rice not found in California, most existing weedy rice biotypes likely originated outside California.  相似文献   

20.
Aboriginal groups in the southwestern United States have grown Proboscidea parviflora ssp. parviflora for basketry fiber. It has been hypothesized that cultivated plants of this subspecies with white seeds and long-clawed fruit (which provide the fiber) have been domesticated. Cluster, multiple discriminant, and unvariate statistical analyses presented here show that the putative domesticate is indeed morphologically distinct from “wild” plants. It has clearly been domesticated, and has diverged from wild populations to the extent that a new variety, var. Hohokamiana, is proposed for the domesticate. Wild and domesticated varieties differ especially in seed color, rostrum, crest, style, and anther lengths. Most characteristics of the wild variety seem to be genetically dominant to those of the domesticate, which may account for absence of a weedy form intermediate between the wild and domesticated varieties. The wild variety is morphologically more variable than the domesticate, probably because of its broader geographical range and its intergradation with another subspecies. Ethnological data and the variational patterns reported here suggest that the domesticate originated in southern Arizonanorthern Sonora, but probably not north of that region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号