首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The changes caused by NaCl− and CaCl2-induced salinity on several leaf parameters have been measured in two cultivars of barley ( Hordeum vulgare L.) growing in a growth chamber in nutrient solution. Salinity was induced by adding to the nutrient solution equal weights of NaCl and CaCl2, to obtain conductivities of 2, 6, 12, 19 and 26 dS m−1. Salinity induced decreases in the leaf water potential and in the osmotic potential. Salinity did not induce significant changes in the relative photosynthetic pigment composition of barley leaves, the photosynthetic pigment stoichiometry for neoxanthin:violaxanthin cycle pigments:lutein:β-carotene:Chl b :Chl a being close to 3:6:14:12:25:100 (mol:mol). Salinity per se did not induce interconversions in the carotenoids within the violaxanthin cycle in most barley leaves. The PSII photochemistry of most barley leaves was unchanged by salinity. However, some apparently healthy leaves growing in high salinity exhibited sudden decreases in PSII photochemistry and increases in zeaxanthin (at the expense of violaxanthin), that preceded rapid leaf drying. Salinity induced significant changes in the slow part of the chlorophyll fluorescence induction curve from barley leaves.  相似文献   

2.
Leaf internal, or mesophyll, conductance to CO2 (gm ) is a significant and variable limitation of photosynthesis that also affects leaf transpiration efficiency (TE). Genotypic variation in gm and the effect of gm on TE were assessed in six barley genotypes (four Hordeum vulgare and two H. bulbosum). Significant variation in gm was found between genotypes, and was correlated with photosynthetic rate. The genotype with the highest gm also had the highest TE and the lowest carbon isotope discrimination as recorded in leaf tissue (Δp). These results suggest gm has unexplored potential to provide TE improvement within crop breeding programmes.  相似文献   

3.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

4.
Fast growth and early development in barley are used in breeding programmes to improve the water use efficiency and transpiration efficiency of this crop in Mediterranean conditions. Here, we examine the use of several simple traits based on the structure and stable isotope composition of seedling leaves to assess differences in early vigour, phenology and grain yield, and also the interaction with low temperatures in barley. A set of 260 F8 lines of two-row barley (Hordeum vulgare L.) derived from the cross of Tadmor and WI 2291 were cultivated in two locations in northwest Syria. Total chlorophyll content on an area basis (SPAD) and specific leaf dry weight (SLDW) were measured in recently fully expanded intact leaves of seedlings. Total leaf area and total dry weight per seedling were evaluated in the same seedlings. The stable isotope compositions of carbon and nitrogen (δ13C and δ15N, respectively) were analyzed in the same leaves on a subset of 75 genotypes. Number of days from planting to heading and grain yield were recorded at both sites. The grain yield measured at both locations was positively correlated with the SPAD value of seedlings, but showed no relationship with SLDW. Days to heading was negatively correlated with SPAD values. Regarding early vigour, a negative relationship between the SLDW and the total leaf area of seedlings was observed. However, no relationship between the δ13C of seedlings and early vigour was observed, except when only the genotypes most resistant to low temperatures (i.e. showing the highest SPAD values) were considered. This subset of genotypes showed negative relationships between δ13C and either total leaf area or total dry weight. In addition, δ15N was negatively correlated with SPAD only within the high-SPAD genotypes. This suggests that within the genotypes resistant to low temperatures, those with higher chlorophyll content assimilate more nitrogen from nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号