首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callophyllis variegata (Gigartinales, Rhodophyta) is an edible species used in salads and soups in Asian countries. Research into its early stages and growth is required to develop cultivation. This study evaluated the effect of temperature and photoperiod on viability and germination in the laboratory and, subsequently, growth in the sea. Carpospores collected during different seasons from the localities of Chauman (41°47′S) and Puñihuil (41°55′S), in southern Chile, were grown in Provasoli medium at 10 and 15 °C. After 7 days, viability was higher in the photoperiod of 16:08 h (light/darkness) and 10 °C, while germination was higher at 15 °C in the same photoperiod. Viability was over 65 % in both localities in winter and spring, and germination was 74.6 and 87.5 %, respectively. Daily growth rates in the laboratory fluctuated between 2 and 10 %. Tetrasporophytic juveniles settled on cotton nets were grown on long lines at 3.5 m deep in the sea for 8 months. Growth and density of fronds were evaluated monthly. Epiphytic seaweeds such as Ulva sp. and Polysiphonia sp. were observed on the nets. C. variegata fronds grew up to approximately 8 cm, and the final density was between 10 and 40 ind/10 cm. A preliminary evaluation of culture costs is also presented.  相似文献   

2.
Juanes  José A.  Puente  Araceli 《Hydrobiologia》1993,260(1):139-144
Vegetative reproduction is an important phenomenon in the propagation of Gelidium species, having significant implications for its ecology and commercial cultivation. This work is an experimental study of one of five sequential processes included in the vegetative propagation of Gelidium sesquipedale: the reattachment of rhizoidal filaments differentiated from apical fragments.Two different factors: light (25 µmol m–2 s–1 and long-day conditions, and 50 µmol m–2 s–1 and short-day conditions) and life history phases (female gametophytes and tetrasporophytes) were combined in a 2 × 2 factorial experiment. Reattachment of apical portions was induced in the laboratory under spray cultivation conditions and occurs mainly at the first stage of development when in contact with the substratum. Light conditions in these experiments (photoperiod + instantaneous photon flux densities) had no effect on the percentage of reattached neofilaments per fragment. Significant differences between percentages corresponding to both phases suggest, however, a probable competitive advantage of sporophytic fronds.  相似文献   

3.
Excised ligulae of Glossophora kunthii from central Chile were cultured of temperatures of 5–25° C, photoperiods of 16:8 and 8:16 h LD cycles, with photon irradiances of 10 and 50 μmol · m?2· s?1. Growth of the ligulae, number of fertile ligulae and number of tetrasporangia forming on the ligulae were assessed. Ligulae tolerated temperatures between 10 and 23°C. Temperature interacted with daylength and photon dose, determining quantitative responses in the growth and fertility of ligulae. Growth was least at 8:16 h LD and was not affected significantly by temperature. It was greatest at 16:8 h LD, 50 μmol · m?2· s?1 and increased with temperature up to 20°C. Percentage of fertile ligulae and number of tetrasporangia increased with temperature at the 8:16 h LD cycle, reaching a maximum at 20°C. Fertility was low at 16:8 h LD, except at 20° C (and low photon dose) suggesting that reproduction at 20° C is independent of daylength in this species. Ligulae grew larger at the long-day photoperiods and the proportions of fertile ligulae were higher at the short-day photoperiods, irrespective of the total photon dose received. These results suggest that some aspects of growth and fertility are controlled by photoperiod.  相似文献   

4.
Carrageenan analyses were conducted on vegetative female clones of Chondrus crispus that were cultured to provide tissues with differing growth rates. Tissue dry weights increased from apex to base of fronds. Total carrageenan contents were lower in apical 1 to 2 cm segments than elsewhere in the frond, except when the alga was grown at high photon irradiances. Clone 373A contained more carrageenan than clone G8. The proportion of 0.3 M KCl-soluble polymers in the total native carrageenans varied from 44 to 92%, being highest in older tissues of fronds cultured at high photon irradiances. The apical 1 cm segments contained less KCl-soluble carrageenans than other tissues from the corresponding fronds. The KCl-soluble carrageenans, when alkali-modified and refractionated, afforded the expected kappa-iota carrageenan in > 79% yields. The remainder consisted of a polymer containing 23.1% SO3Na and 8.4% 3,6-anhydrogalactose. Lambda carrageenan was not detected. Variations in carrageenan distribution between the apical region and other parts of the frond may reflect the increasing influence of medullary tissue developed as the immature cells differentiate.  相似文献   

5.
Lithophyllum yessoense Foslie is a markedly dominant subtidal, crustose coralline alga in south–western Hokkaido, Japan. In this study, the effects of irradiance, water temperature and nutrients (nitrate and phosphate) on the growth of sporelings of the alga were examined. The relative growth rate (RGR) was saturated at 17.6% d?1 at a high irradiance (240 umol photon m2s?1). Even at a low irradiance (10.7–49.9 umol photon m?2s?1), RGR was 7.1–12.7% d?1 The survival rate of sporelings was greater than 80% at irradiance above 10.7 μmol photon m?2s?1 throughout the culture period. The growth of L. yessoense sporelings was promoted at 15°C and 20°C, but inhibited at 5°C. The half‐saturation constants (Ks) for growth were about 0.5 umol L?1 and 0.14 umol L?1 for nitrate and phosphate, respectively. Saturated nitrate and phosphate concentrations for the growth were about 4.0 μmol L?1 and 0.4 μmol L?1, respectively, suggesting that L. yessoense is adaptable to a relatively high water temperature, a wide range of irradiance, and low ambient nitrate and phosphate concentrations. The results provide a possible explanation of why L. yessoense is dominant in the environments of south‐western Hokkaido.  相似文献   

6.
The survival of dipterocarp seedlings in the understorey of south‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. Field measurements demonstrated that Shorea leprosula seedlings in a rain forest understorey received a high proportion of daily photon flux density at temperatures supra‐optimal for photosynthesis (72% at ≥30 °C, 14% at ≥35 °C). To investigate the effect of high temperatures on photosynthesis during sunflecks, gas exchange and chlorophyll fluorescence measurements were made on seedlings grown in controlled environment conditions either, under uniform, saturating irradiance (approximately 539 µmol m?2 s?1) or, shade/fleck sequences (approximately 30 µmol m?2 s?1/approximately 525 µmol m?2 s?1) at two temperatures, 28 or 38 °C. The rate of light‐saturated photosynthesis, under uniform irradiance, was inhibited by 40% at 38 °C compared with 28 °C. However, during the shade/fleck sequence, photosynthesis was inhibited by 59% at 38 °C compared with 28 °C. The greater inhibition of photosynthesis during the shade/fleck sequence, when compared with uniform irradiance, was driven by the lower efficiency of dynamic photosynthesis combined with lower steady‐state rates of photosynthesis. These results suggest that, contrary to current dogma, sunfleck activity may not always result in significant carbon gain. This has important consequences for seedling regeneration processes in tropical forests as well as for leaves in other canopy positions where sunflecks make an important contribution to total photon flux density.  相似文献   

7.
The extent of changes in basic physiological and demographic traits associated with reproduction was investigated in the highly cultivated haploid–diploid red alga, Gracilaria chilensis. Sixty individuals bearing vegetative and reproductive fronds collected in the natural population of Niebla (39°52′?S, 73°23′?W), in Chile, were cultivated under controlled culture conditions. Our results demonstrated that vegetative fronds have a higher survival rate and a better growth rate than reproductive ones irrespective of the type of individual analyzed (male gametophyte, female gametophyte, and tetrasporophyte). Moreover, the reproductive fronds clearly showed a decrease in photosynthetic activity compared to non-reproductive ones. In males and tetrasporophytes, the photosynthetic reduction in reproductive individuals could be explained by a physical effect of reproductive structure development as well as spores release, disrupting the continuity of the photosynthetic cortical tissues. Translocation of photoassimilates from nearby vegetative tissue or the previous accumulation of photosynthetic products seems to be a prerequisite for reproductive structure development in this species. Altogether, these results document for the first time in G. chilensis that reproduction has a strong physiological effect on male, female, and tetrasporophyte fronds. This trade-off between reproduction, growth, and survival suggest the existence of reproductive costs in the life history of G. chilensis.  相似文献   

8.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

9.
Three kinds of enzymes, agarase, β-1,4-mannanase, and β-1,3-xylanase, required for isolation of protoplasts from the red alga Bangia atropurpurea (Roth) C. Ag. were prepared from bacterial culture fluids of Vibrio sp. PO-303, Vibrio sp. MA-138, and Alcaligenes sp. XY-234, respectively, isolated from the sea environment. The optimal pH of all enzymes was around 7.5. Suitable conditions for protoplast isolation from B. atropurpurea were examined. The pretreatment of the fronds with pa-pain solution (20 mM Mes buffer, pH 7.5, containing 2% papain and 0.5 M mannitol) contributed to successful protoplast isolation. When razor-cut fragments of the fronds (about 200 mg in fresh weight) immersed in 20 mM Mes buffer, 7.5, containing 0.5 M mannitol and one unit each of agarase, β-1,4-mannanase, and β-1,3-xylanase were incubated at 22°C for 90 min with gentle agitation, 5.7 × 106 protoplasts were released from them. Many protoplasts regenerated into fronds of regular or irregular shape.  相似文献   

10.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

11.
Abstract Previously, accumulation of a 31-kDa polypeptide had been observed in the light-harvesting apparatus of thylakoids of maize leaves exposed to 5°C and high light (Hayden et al., 1986). The accumulation and disappearance of this 31-kDa polypeptide in thylakoids of maize leaves are examined as a function of photon flux density and temperature. The accumulation of large amounts of the polypeptide at 5°C was light-dependent during a 6-h chill period, with 50% of maximal accumulation occurring at a photon flux density of 60 μmol m?2 s?1.Some polypeptide accumulation did occur in leaves kept in the dark at 5°C for 6 h, i.e. ca. 18% of that accumulating at a photon flux density of 1500 μmol m?2 s?1. The temperature optimum for polypeptide accumulation was ca. 9°C with greater than 50% of maximal accumulation being achieved between 5 and 11°C. The breakdown of maximally accumulated polypeptide on returning leaves to 25°C was complete after 1 h, had a half-time of ca. 20 min and was independent of light. Breakdown of the polypeptide was also observed when thylakoids isolated from chilled leaves were incubated at 25°C. Reductions of thylakoid incubation temperature between 13 and 5°C markedly reduced the rate of polypeptide disappearance. The accumulation of the polypeptide is discussed in relation to temperature and light effects on the rate of the polypeptide synthesis and of peptidase activities. The results are also discussed in the context of accumulation of the polypeptide in maize leaves in the field and consideration is given to the possible physiological significance.  相似文献   

12.
Several demographic features were examined in the field over a period of eleven months for the subtidal alga Cystoseira osmundacea (Turner) C. Agardh at two localities near Monterey, California. This species showed a restricted distribution with depth, with peak average numbers of 3–4 plants per m2 occurring at 6–8 m and forming a dense canopy on the surface of the sea. Below 10 m depth, there was a decline in the abundance of plants and also in the proportion of plants which bore seasonal fronds and reproductive tissue. Macrocystis pyrifera (L.) C. Agardh plants were also common at both localities. There was a negative correlation between the presence of this species and C. osmundacea at a scale of 1 m2, but no correlation at 4, 9, and 25 m2. Cohorts of C. osmundacea were mapped and tagged at one locality. The plants had markedly seasonal growth, with the greatest elongation of fronds occurring between March and June. Dense surface canopies and reproductive tissue were present during the summer months of June–August. These seasonal fronds were shed during September, leaving small perennial holdfasts and fronds. Plants were strictly dioecious, and there was a one-to-one ratio of male to female plants at both localities. Length-dry weight relationships showed that the largest plants had over 80% of their weight invested in seasonal fronds (vegetative plus reproductive tissue). Recruits of C. osmundacea at one locality appeared during September–November only in areas cleared to bare substratum. There was 15% survival of recruits between November and the following May, while 98% of the original mapped cohort survived for the 11 months of the study.  相似文献   

13.
The performance of the photosynthetic apparatus was examined in the third leaves of Zea mays L. seedlings grown at near-optimal (25 °C) or at suboptimal (15 °C) temperature by measuring chlorophyll (ChI) a fluorescence parameters and oxygen evolution in different temperature and light conditions. In leaf tissue grown at 25 and 15 °C, the quantum yield of PSII electron transport (ψPSII) and the rate of O2 evolution decreased with decreasing temperature (from 25 to 4 °C) at a photon flux density of 125 μmol m?2 s?1. In leaves grown at 25 °C, the decrease of ψPSII correlated with a decrease of photochemical ChI fluorescence quenching (qp), whereas in leaves crown at 15 °C qp was largely insensitive to the temperature decrease. Compared with leaves grown at 25 °C, leaves grown at 15 °C were also able to maintain a higher fraction of oxidized to reduced QA (greater qp) at high photon flux densities (up to 2000 μmol m?2 s?1), particularly when the measurements were performed at high temperature (25 °C). With decreasing temperature and/or increasing light intensity, leaves grown at 15 °C exhibited a substantial quenching of the dark level of fluorescence F0 (q0) whereas this type of quenching was virtually absent in leaves grown at 25 °C. Furthermore, leaves grown at 15 °C were able to recover faster from photo inhibition of photosynthesis after a photoinhibitory treatment (1200 μmol m?2 s?1 at 25, 15 or 6 °C for 8 h) than leaves grown at 25 °C. The results suggest that, in spite of having a low photosynthetic capacity, Z. mays leaves grown at sub optimal temperature possess efficient mechanisms of energy dissipation which enable them to cope better with photoinhibition than leaves grown at near-optimal temperature. It is suggested that the resistance of Z. mays leaves grown at 15 °C to photoinhibition is related to the higher content of carotenoids of the xanthophyll cycle (violaxanthin + antheraxanthin + zeaxanthin) measured in these leaves than in leaves grown at 25 °C.  相似文献   

14.
Growth and calcium carbonate deposition rates of the coralline alga Calliarthron cheilosporioides Manza were quantified by monitoring fronds in the intertidal zone that had been chemically labeled with the nontoxic fluorescent brightener Calcofluor white. This vital stain effectively labeled apical meristems of coralline thalli in the field: fronds exposed for only 5 min had detectable chemical marks at least 1.5 years later. By distinguishing portions of thalli that developed before and after exposure, this methodology permitted accurate measurement of growth and calcium carbonate deposition at each meristem. In Calliarthron, meristematic activity declined with increasing frond size. However, because growing fronds dichotomize, the total number of meristems and the deposition rate of new calcified tissue both increased with frond size. Growth rates reported here suggest that large fronds may not be as old as previously estimated. The Calcofluor white method may improve demographic studies of corallines by resolving growth and age of fronds in the field and may facilitate studies of climate change on calcium carbonate deposition in these ecologically important, calcifying algae.  相似文献   

15.
Abstract Biomass increase, C and N content, C2H2 reduction, percentage dry weight and chlorophyll a/b ratios were determined for clones of Azolla caroliniana Willd., A. filiculoides Lam., A. mexicana Presl., and A. pinnata R. Br. as a function of nutrient solution, pH, temperature, photoperiod, and light intensity in controlled environment studies. These studies were supplemented by a glasshouse study. Under a 16 h, 26°C day at a light intensity of 200 μmol m?2 s?1 and an 8 h, 19° C dark period, there was no significant difference in the growth rates of the individual species on the five nutrient solutions employed. Growth was comparable from pH 5 to pH 8, but decreased at pH 9. Using the same photoperiod and light intensity but constant growth temperatures of 15–40°C, at 5°C intervals, the individual species exhibited maximum growth, nitro-genase (N2ase) activity and N content at either 25° or 30°C. There was no difference in the temperature optima at pH 6 and pH 8. The tolerance of the individual species to elevated temperature was indicated to be A. mexicana> A. pinnata> A. caroliniana> A.filiculoides. At the optimum temperature, growth rates increased with increasing photoperiod at both pH 6 and pH 8 but N2ase activity was usually highest at a 16 h light period. At photon flux densities of 100, 200, 400 and 600 μmol m?2 s?1, during a 16 h light period and optimum growth temperature of the individual species, N2ase activity was saturated at less than 200 μmol m?2 s?1 and growth at 400 μmol m?2 s?1.No interacting effects of light and pH were noted for any species, nor were light intensities up to 1700 μmol m?2 s?1 detrimental to the growth rate or N content of any species in a 5 week glasshouse study with a natural 14.5 h light period and a constant temperature of 27.5°C. Using the optimum growth temperature, a 16 h light period, and a photon flux density of at least 400 μmol m?2 s?1, the Azolla species all doubled their biomass in 2 days or less and contained 5–6% N on a dry weight basis.  相似文献   

16.
Abstract When tomato plants of the high-altitude species Lycopersicon hirsutum and of the cultivated Lycopersicon esculentum were grown at 24/18°C (day/night), the effects of temperature, photon flux density, and intercellular CO2 concentration up to about 600 μl l?1 on net CO2 uptake were similar in the two species. Acclimation of these plants at 12/6°C (day/night) resulted, after 4 d or longer, in a similar downward shift of about 5°C in the optimum temperature for CO2 uptake. However, in comparison with the cultivated species, the high-altitude plants achieved a higher rate of CO2 uptake at saturating concentrations of intercellular CO2, maintained a higher level of saturating-light CO2 uptake rate at 10°C after exposure to chilling stress (10°C and photon flux density of 400 μmol m?2s?1 d and 5°C night) for 7–18 d, and displayed a better capacity for rapid recovery after prolonged stress. The greater capacity for CO2 uptake observed in the high-altitude species during and after exposure to chilling stress was also reflected in its higher growth rate under those conditions compared with plants of L. esculentum. These advantages of the high-altitude species may partly explain its ability to survive and complete its life cycle under the environmental conditions prevailing in its natural habitat.  相似文献   

17.
The factors controlling biomass production and the synthesis of astaxanthin esters in the microalga Haematococcus pluvialis (CCAP 34/7) have been investigated using a statistical approach employing response surface methodology (RSM). The culture conditions required for optimal growth and carotenogenesis in this alga are very different. Of particular importance is the photon flux density: for growth the optimum is 50–60 μmol m−2 s−1 whereas the optimum for astaxanthin synthesis is much higher at ∼-1600 μmol m−2 s−1. The addition of low levels of NaCl to the medium also stimulates to a small extent synthesis of astaxanthin, but photon flux density remains the overriding factor. The optimal temperature for this strain is quite low at 14–15 °C. RSM has been shown to be a rapid and effective technique leading to the optimisation of algal culture conditions. This statistical approach can be applied readily to the majority of microalgae and their products.  相似文献   

18.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

19.
In order to promote the use of sub-Antarctic macroalgae as food, four species of marine macroalgae: Macrocystis pyrifera, Durvillaea antarctica, Pyropia columbina, and Callophyllis variegata were studied for their nutritional value. They were collected monthly between October and December 2012 throughout the Strait of Magallanes, sub-Antarctic Chile. The chemical composition, including carbohydrates, proteins, lipids, and vitamins A and C, and the macronutrient, mineral, and fatty acid content were examined. Ash (15.1–34.1 %) and soluble fiber (26.5 to 40.3 %) were the most abundant in these species. Presence of protein was moderate (8.2–25.0 %), with red alga (C. variegata) having the highest value on dry weight (dw). All algal species had lipid contents of less than 5 % dw. Maximum carbohydrate content was observed in P. columbina (9.5 % dw). Potassium was the most abundant essential element found in M. pyrifera (8.51 % dw), while P. columbina was found to be richest in iron (305.5?±?5.5 μg g?1 dw) and C. variegata showed the highest contents of Cu (17.4?±?0.7 μg g?1 dw). The most abundant saturated fatty acids were palmitic (C16:0) and myristic acid (C14:0), with values ranging from 4.33 to 9.22 %. The most abundant monounsaturated fatty acid was oleic acid (C18:1ω9). The highest levels of polyunsaturated fatty acid were observed for arachidonic (20:4ω6) and eicosapentaenoic acid (C20:5ω3) or EPA.  相似文献   

20.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号