首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Aim The distribution of genetic variation in the Australian dry sclerophyll plant Hardenbergia violacea (Fabaceae) is examined in the context of Pleistocene climate change in order to identify likely refugia. Particular consideration is given to the origin of range disjunctions in South Australia and Tasmania, and to determining whether the Tasmanian population is indigenous or recently introduced from mainland Australia. Location Southeastern Australian mainland and Tasmania. Methods A combination of chloroplast polymerase chain reaction–restriction fragment length polymorphism and genomic amplified fragment length polymorphism (AFLP) marker systems was used to examine the genetic structure of 292 individuals from 13 populations across the range of H. violacea in southeastern Australia. Results Hardenbergia violacea populations in Tasmania and southern Victoria were characterized by low, almost monotypic chloroplast diversity. New South Wales showed higher haplotype diversity and haplotype sharing among widely distributed populations. Principal coordinates analysis (PCoA) of the AFLP data found a strong latitudinal cline in AFLP variation from northern New South Wales south to Tasmania. The Tasmanian population formed an isolated and somewhat disjunct genetic cluster at one end of this cline. However, the South Australian population was an exception to the clinal variation shown by all other populations, forming a highly disjunct cluster in the PCoA. Within‐population genetic diversity was low in both disjunct populations. Main conclusions The genetic evidence indicates that the Tasmanian population is likely to be indigenous and probably the product of vicariance, which was followed by range contraction at the Last Glacial Maximum or an earlier glacial event. The deep phylogenetic disjunction in South Australia is evidence of a much earlier separation on mainland Australia. The chloroplast structure indicates that, during the Pleistocene, H. violacea underwent broad‐scale recolonization in southern Victoria and Tasmania, possibly from a large continental refugium in eastern New South Wales. We conclude that H. violacea, and presumably the sclerophyll communities in which it occurs, have undergone multiple range contractions to large continental refugia during different Pleistocene glaciations in southeastern Australia.  相似文献   

2.
We investigated the range dynamics of Artemisia eriantha, a widespread, but rare, mountain plant with a highly disjunct distribution in the European Alpine System. We focused on testing the roles of vicariance and long‐distance dispersal in shaping the current distribution of the species. To this end, we collected AFLP and plastid DNA sequence data for 17 populations covering the entire distributional range of the species. Strong phylogeographical structure was found in both datasets. AFLP data suggested that almost all populations were genetically strongly differentiated, with 58% of the overall genetic variation partitioned among populations. Bayesian clustering identified five groups of populations: Balkans, Pyrenees, Central Apennines, one southwestern Alpine population and a Widespread cluster (eastern Pyrenees, Alps, Carpathians). Major groups were supported by neighbor‐joining and NeighbourNet analyses. Fourteen plastid haplotypes were found constituting five strongly distinct lineages: Alps plus Pyrenees, Apennines, Balkans, southern Carpathians, and a Widespread group (eastern Pyrenees, northern Carpathians, Mt. Olympus). Plastid DNA data suggested that A. eriantha colonized the European Alpine System in a westward direction. Although, in southern Europe, vicariant differentiation among the Iberian, Italian and Balkan Peninsulas predominated, thus highlighting their importance as glacial refugia for alpine species, in temperate mountain ranges, long‐distance dispersal prevailed. This study emphasizes that currently highly disjunct distributions can be shaped by both vicariance and long‐distance dispersal, although their relative importance may be geographically structured along, for instance, latitude, as in A. eriantha. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 214–226.  相似文献   

3.
Geographic patterns of parthenogenesis and the number of transitions from sexual diploidy to asexual (apomictic) autopolyploidy were examined for 40 populations of the Easter daisy, Townsendia hookeri. Analyses of pollen diameter and stainability characterized 15 sexual diploid and 25 apomictic polyploid populations from throughout the plant's western North American range. Sexual diploids were restricted to two Wisconsin refugia: Colorado/Wyoming, south of the ice sheets, and northern Yukon/Beringia. Chloroplast DNA sequencing uncovered 17 polymorphisms within the ndhF gene and trnK intron, yielding 10 haplotypes. Phylogenetic analyses indicated that five exclusively polyploid haplotypes were derived from four haplotypes that are shared among ploidies, conservatively inferring a minimum of four origins of apomictic polyploidy. Three of these apomictic polyploid origins were derived from southern sexual diploids, while the fourth origin was derived from northern sexual diploids. Analyses of regional diversity were suggestive of a formerly broad distribution for sexual diploids that has become subsequently fragmented, possibly due to the last round of glaciation. As sexual diploids were exclusively found north and south of the glacial maximum, while formerly glaciated areas were exclusively inhabited by asexual polyploids derived from both northern and southern sexual lineages, it is more likely that patterns of glaciation, as opposed to a particular latitudinal trend, played a causal role in the establishment of the observed pattern of geographic parthenogenesis in Easter daisies.  相似文献   

4.
European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum.  相似文献   

5.
Broad‐scale plastid (chloroplast) DNA studies of beech (Fagus sylvatica) populations suggest the existence of glacial refugia and introgression zones in south‐eastern Europe. We choose a possible refugium of beech in northern Greece, Mt. Paggeo, which hosts a private plastid haplotype for beech, to conduct a fine‐scale genetic study. We attempt to confirm or reject the hypothesis of the existence of a small‐scale refugium and to gain an understanding of the ecological and topographical factors affecting the spatial distribution of plastid haplotypes in the area. Our results reveal a high haplotype diversity on Mt. Paggeo, but the overall distribution of haplotypes shows no significant correlation with the ecological characteristics of the beech forests. However, the private haplotype is found at high frequencies in beech forests located in or near ravines, having a high spatial overlap with a relict vegetation type occurring in ecological conditions found mainly in ravines. This result emphasizes the importance of topography in the existence of glacial refugia in the wider area. Furthermore, haplotypes originating from two more widespread beech lineages in Greece are found on Mt. Paggeo, indicating a possible mixing of populations originating from a local refugium with populations from remote refugia that possibly migrated into the area after the last glaciation. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 516–528.  相似文献   

6.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

7.
This study investigated the phylogeographic structure of Cistus ladanifer, in order to locate its Quaternary refugia, reconstruct its recolonisation patterns and assess the role of geographical features (mountain ranges, rivers and the Strait of Gibraltar) as barriers to its seed flow and expansion through the Western Mediterranean. Thirty-eight populations were screened for length variation of polymorphic chloroplast simple sequence repeats (cpSSRs). Statistical analyses included estimation of haplotypic diversity, hierarchical analysis of molecular variation (amova) and fixation indices. Mantel tests, SAMOVA and BARRIER analyses were applied to evaluate the geographical partitioning of genetic diversity across the entire species range. Pollen data from bibliography were used to complement molecular inferences. Chlorotype diversity within populations was similar throughout the natural range of C. ladanifer (mean haplotypic diversity=0.32). High differentiation among populations was estimated (G(ST)=0.60). Our data suggest that the barriers of the Strait of Gibraltar and the Betic ranges may have favoured the divergence during glacial periods of four different lineages of populations inferred with SAMOVA. The main northward colonisation of in the Iberian Peninsula occurred from refugia in southwest Iberia. This process may have been influenced by human activities (forest clearance, livestock grazing and even commerce) in the Iberian Peninsula. In contrast, populations in the Betic area have conserved a specific haplotype.  相似文献   

8.
Rendell S  Ennos RA 《Molecular ecology》2003,12(10):2681-2688
Variation in the chloroplast genome of Ilex aquifolium (English holly), a dioecious evergreen tree native to south, west and central Europe, was analysed using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and microsatellites. Differentiation between populations was high (GST = 0.595) and evidence for phylogeographical structure was detected (NST = 0.697, significantly higher than GST). Two chloroplast lineages were inferred originating from putative glacial refugia in southern Europe (Iberia, Italy and possibly the Balkans). The GST value was higher than reported for endozoochorous hermaphrodite species and for anemochorous dioecious species investigated over a similar geographical scale. It appears that dioecy has contributed to strong differentiation between refugia and that this has been maintained following postglacial recolonization as a result of limited seed flow. Palynological records for I. aquifolium are poor, thus these results give an important insight into patterns of glacial isolation and postglacial recolonization of this species.  相似文献   

9.
10.
Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae)   总被引:2,自引:0,他引:2  
Four highly differentiated chloroplast DNA (cpDNA) lineages were identified in the forest tree species Eucalyptus globulus Labill. (Myrtaceae) in Australia using restriction site polymorphisms from Southern analysis. The cpDNA variation did not conform with ssp. boundaries, yet there was a strong geographical pattern to the distribution of the lineages. One lineage (C) was geographically central and widespread, whereas the other three lineages were found in peripheral populations: Western (W), Northern (N) and Southern (S). Thirteen haplotypes were detected in E. globulus , seven of which belonged to clade C. At least three of the cpDNA lineages (C, N and S) were shared extensively with other species. On the east coast of the island of Tasmania, there was a major north–south difference in cpDNA in the virtually continuous distribution of E. globulus . Northern populations harboured haplotypes from clade C while southeastern populations harboured a single haplotype from clade S. This difference was also reflected in several co-occurring endemic species. It is argued that the extensive cpDNA differentiation within E. globulus is likely to originate from interspecific hybridization and 'chloroplast capture' from different species in different parts of its range. Superficially, this hybridization is not evident in taxonomic traits; however, large-scale common garden experiments have revealed a steep cline in quantitative genetic variation that coincides with the haplotype transition in Tasmania. Our cpDNA results provide the strongest evidence to date that hybridization has had a widespread impact on a eucalypt species and indicate that reticulate evolution may be occurring on an unappreciated scale in Eucalyptus .  相似文献   

11.
12.
13.
Aim To analyse the current geographical structure of chloroplast DNA variation in the Turnera sidoides L. complex in order to establish historical biogeographical hypotheses for the mid‐latitude South American lowlands. During the Quaternary, the climate shifted from tropical humid to cold dry, and the vegetation cover has not been stable. The consequences of these processes on the current distribution of the vegetation of this area have received very little attention. Location The mid‐latitude South American lowlands extend between c. 20 and 40°S and include Uruguay, northern, central and eastern Argentina, southern Brazil, and parts of southern Paraguay and Bolivia. They are surrounded by higher‐elevation systems. Methods Turnera sidoides is a well‐studied polyploid complex of perennial rhizomatous herbs occurring throughout the area of interest. We analysed 321 individuals from 79 populations of the five recognized subspecies. We also included progenies from artificial crosses in order to analyse chloroplast inheritance. After screening sequences for four non‐coding chloroplast DNA regions, the trnLtrnF spacer was selected to characterize the collection. Results Three haplotypes can be easily identified, with each differing from the others in two independent characters. A clear geographic structure is revealed when haplotypes are plotted for the complex as a whole regardless of subspecies and cytotype. Three distinct regions can be identified. Main conclusions We propose three putative refugial areas for the Turnera sidoides complex, which are associated with the orographical systems of the region. Ravines and slopes in the Haedo Cuchilla system in northern Uruguay, the elevations of the western side of the area in Argentina, and the eastern Serranías system in south‐eastern Uruguay may each have served as refugia in which the A, B and C haplotypes became fixed during the drier climatic phases. Biogeographical patterns in the area covered by T. sidoides, particularly east of the Uruguay River, have not previously been analysed from a historical perspective.  相似文献   

14.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

15.
Monocelis lineata is a complex of cryptic species (three in the Mediterranean and one in the Atlantic) widespread in midlittoral habitats. Throughout the range, populations with or without an ocular pigmented shield are found. We investigated the genetic structure of the North‐East Atlantic populations with the aim of shedding light on their phylogeography and reconstructing possible patterns of recolonization after the Würmian glaciation. Fourteen samples were investigated using cytochrome c oxidase subunit I (COI) and 13 by inter‐simple sequence repeats (ISSRs). COI did not exhibit a clear pattern of decreased genetic diversity along a latitudinal gradient. Populations from Ferrol (Spain), Doolin (Ireland), and Helsingør (Denmark) showed a higher genetic variability, whereas a reduction in the number of haplotypes was found at the northernmost edge of the distribution and in northern Ireland and Scotland. Two genetically differentiated areas (southern Europe and south‐western Ireland versus northern Atlantic) were revealed by ISSR data. The results obtained provided evidence of three refugia (Iberian Peninsula, south‐western Ireland, and North Sea), and the occurrence of secondary contacts that shaped the genetic variability of some of the populations examined. Two different recolonization pathways of north‐western Europe during the post‐Würmian glaciations have been detected. Furthermore, ISSR analysis provided evidence of genetic divergence among populations with and without pigmented eyespot, suggesting the action of ecological differentiation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 117–135.  相似文献   

16.
Long‐distance dispersal (LDD) is a pivotal process for plants determining their range of distribution and promoting gene flow among distant populations. Most fleshy‐fruited species rely on frugivorous vertebrates to disperse their seeds across the landscape. While LDD events are difficult to record, a few ecological studies have shown that birds move a sizeable number of ingested seeds across geographic barriers, such as sea straits. The foraging movements of migrant frugivores across distant populations, including those separated by geographic barriers, creates a constant flow of propagules that in turn shapes the spatial distributions of the genetic variation in populations. Here, we have analysed the genetic diversity and structure of 74 populations of Pistacia lentiscus, a fleshy‐fruited shrub widely distributed in the Mediterranean Basin, to elucidate whether the Mediterranean Sea acts as a geographic barrier or alternatively whether migratory frugivorous birds promote gene flow among populations located on both sides of the sea. Our results show reduced genetic distances among populations, including intercontinental populations, and they show a significant genetic structure across an eastern‐western axis. These findings are consistent with known bird migratory routes that connect the European and African continents following a north‐southwards direction during the fruiting season of many fleshy‐fruited plants. Further, approximate Bayesian analysis failed to explain the observed patterns as a result of historical population migrations at the end of Last Glacial Maximum. Therefore, anthropic and/or climatic changes that would disrupt the migratory routes of frugivorous birds might have genetic consequences for the plant species they feed upon.  相似文献   

17.
Past glaciation events have played a major role in shaping the genetic diversity and distribution of wild sheep in North America. The advancement of glaciers can isolate populations in ice‐free refugia, where they can survive until the recession of ice sheets. The major Beringian refugium is thought to have held thinhorn sheep (Ovis dalli) populations during times of glacial advance. While isolation in the major refugium can account for much of the genetic and morphological diversity seen in extant thinhorn sheep populations, mounting evidence suggests the persistence of populations in smaller minor refugia. We investigated the refugial origins of thinhorn sheep using ~10 000 SNPs obtained via a cross‐species application of the domestic sheep ovine HD BeadChip to genotype 52 thinhorn sheep and five bighorn sheep (O. canadensis) samples. Phylogenetic inference revealed a distinct lineage of thinhorn sheep inhabiting British Columbia, which is consistent with the survival of a group of thinhorn sheep in a minor refugium separate from the Beringian refugium. Isolation in separate glacial refugia probably mediated the evolution of the two thinhorn sheep subspecies, the white Dall's sheep (O. d. dalli), which persisted in Beringia, and the dark Stone's sheep (O. d. stonei), which utilized the minor refugium. We also found the first genetic evidence for admixture between sheep from different glacial refugia in south‐central Yukon as a consequence of post glacial expansion and recolonization. These results show that glaciation events can have a major role in the evolution of species inhabiting previously glaciated habitats and the need to look beyond established refugia when examining the evolutionary history of such species.  相似文献   

18.
This study details the phylogeographic pattern of the bank vole, Clethrionomys glareolus, a European rodent species strongly associated with forest habitat. We used sequences of 1011 base pairs of the mitochondrial DNA cytochrome b gene from 207 bank voles collected in 62 localities spread throughout its distribution area. Our results reveal the presence of three Mediterranean (Spanish, Italian and Balkan) and three continental (western, eastern and 'Ural') phylogroups. The endemic Mediterranean phylogroups did not contribute to the post-glacial recolonization of much of the Palaearctic range of species. Instead, the major part of this region was apparently recolonized by bank voles that survived in glacial refugia in central Europe. Moreover, our phylogeographic analyses also reveal differentiated populations of bank voles in the Ural mountains and elsewhere, which carry the mitochondrial DNA of another related vole species, the ruddy vole (Clethrionomys rutilus). In conclusion, this study demonstrates a complex phylogeographic history for a forest species in Europe which is sufficiently adaptable that, facing climate change, survives in relict southern and northern habitats. The high level of genetic diversity characterizing vole populations from parts of central Europe also highlights the importance of such regions as a source of intraspecific genetic biodiversity.  相似文献   

19.
20.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号