首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

2.
3.
Targeted sequencing is a cost-efficient way to obtain answers to biological questions in many projects, but the choice of the enrichment method to use can be difficult. In this study we compared two hybridization methods for target enrichment for massively parallel sequencing and single nucleotide polymorphism (SNP) discovery, namely Nimblegen sequence capture arrays and the SureSelect liquid-based hybrid capture system. We prepared sequencing libraries from three HapMap samples using both methods, sequenced the libraries on the Illumina Genome Analyzer, mapped the sequencing reads back to the genome, and called variants in the sequences. 74-75% of the sequence reads originated from the targeted region in the SureSelect libraries and 41-67% in the Nimblegen libraries. We could sequence up to 99.9% and 99.5% of the regions targeted by capture probes from the SureSelect libraries and from the Nimblegen libraries, respectively. The Nimblegen probes covered 0.6 Mb more of the original 3.1 Mb target region than the SureSelect probes. In each sample, we called more SNPs and detected more novel SNPs from the libraries that were prepared using the Nimblegen method. Thus the Nimblegen method gave better results when judged by the number of SNPs called, but this came at the cost of more over-sampling.  相似文献   

4.
Sequence capture across large phylogenetic scales is not easy because hybridization capture is only effective when the genetic distance between the bait and target is small. Here, we propose a simple but effective strategy to tackle this issue: pooling DNA from a number of selected representative species of different clades to prepare PCR‐generated baits to minimize the genetic distance between the bait and target. To demonstrate the utility of this strategy, we newly developed a set of universal nuclear markers (including 94 nuclear protein‐coding genes) for Lepidoptera, a superdiverse insect group. We used a DNA pool from six lepidopteran species (representing six superfamilies) to prepare PCR baits for the 94 markers. These homemade PCR baits were used to capture sequence data from 43 species of 17 lepidopteran families, and 94% of the target loci were recovered. We constructed two data sets from the obtained data (one containing ~90 kb target coding sequences and the other containing ~120 kb target + flanking coding sequences). Both data sets yielded highly similar and well‐resolved trees with 90% of nodes having >95% bootstrap support. Our capture experiment indicated that using DNA mixtures pooled from different clade‐representative species of Lepidoptera to prepare PCR baits can reliably capture a large number of targeted nuclear markers across different Lepidoptera lineages. We hope that this newly developed nuclear marker set will serve as a new phylogenetic tool for Lepidoptera phylogenetics, and the PCR bait preparation strategy can facilitate the application of sequence capture techniques by researchers to accelerate data collection.  相似文献   

5.
6.
The development of a lentiviral system to deliver genes to specific cell types could improve the safety and the efficacy of gene delivery. Previously, we have developed an efficient method to target lentivectors to specific cells via an antibody–antigen interaction in vitro and in vivo. We report herein a targeted lentivector that harnesses the natural ligand–receptor recognition mechanism for targeted modification of c‐KIT receptor‐expressing cells. For targeting, we incorporate membrane‐bound human stem cell factor (hSCF), and for fusion, a Sindbis virus‐derived fusogenic molecule (FM) onto the lentiviral surface. These engineered vectors can recognize cells expressing surface CD117, resulting in efficient targeted transduction of cells in an SCF‐receptor dependent manner in vitro, and in vivo in xenografted mouse models. This study expands the ability of targeting lentivectors beyond antibody targets to include cell‐specific surface receptors. Development of a high titer lentivector to receptor‐specific cells is an attractive approach to restrict gene expression and could potentially ensure therapeutic effects in the desired cells while limiting side effects caused by gene expression in non‐target cells. Biotechnol. Bioeng. 2009; 104: 206–215 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
The CRISPR/Cas9 system has been extensively applied for crop improvement. However, our understanding of Cas9 specificity is very limited in Cas9‐edited plants. To identify on‐ and off‐target mutation in an edited crop, we described whole genome sequencing (WGS) of 14 Cas9‐edited cotton plants targeted to three genes, and three negative (Ne) control and three wild‐type (WT) plants. In total, 4188–6404 unique single‐nucleotide polymorphisms (SNPs) and 312–745 insertions/deletions (indels) were detected in 14 Cas9‐edited plants compared to WT, negative and cotton reference genome sequences. Since the majority of these variations lack a protospacer‐adjacent motif (PAM), we demonstrated that the most variations following Cas9‐edited are due either to somaclonal variation or/and pre‐existing/inherent variation from maternal plants, but not off‐target effects. Of a total of 4413 potential off‐target sites (allowing ≤5 mismatches within the 20‐bp sgRNA and 3‐bp PAM sequences), the WGS data revealed that only four are bona fide off‐target indel mutations, validated by Sanger sequencing. Moreover, inherent genetic variation of WT can generate novel off‐target sites and destroy PAMs, which suggested great care should be taken to design sgRNA for the minimizing of off‐target effect. These findings suggested that CRISPR/Cas9 system is highly specific for cotton plants.  相似文献   

8.
9.
Laser capture microdissection (LCM) is a powerful system which allows the isolation of selectively targeted cells from a tissue section for the analysis of gene-expression profiles of individual cells. The technique has been successfully used for the isolation of specific mammalian cells, mainly cancer cells. However, LCM has never been reported to be applied to the gene expression analysis of plant cells. We used a modified LCM system and successfully applied it to target and isolate phloem cells of rice leaf tissue whose morphology is apparently different from the surrounding cells. Total RNA was extracted from microdissected (approximately 150) phloem cells and the isolated RNA was used for the construction of a cDNA library following the T7 RNA polymerase amplification. Sequence analysis of 413 randomly chosen clones from the library revealed that there was a high level of redundancy in the population and the clones could be subclassified into 124 different groups that contained related sequences. Approximately 37% of both the redundant population and the non-redundant subgroups had novel components while approximately 63% were either homologues to the known genes reported to be localized in phloem of different plant species, or were homologues to other known genes. In situ hybridization revealed that putative amino acid permease, one of the non-redundant clones, was specifically expressed in the phloem. The results proved the effectiveness of construction of a specialized cDNA library from the specific plant cells.  相似文献   

10.
Wei X  Ju X  Yi X  Zhu Q  Qu N  Liu T  Chen Y  Jiang H  Yang G  Zhen R  Lan Z  Qi M  Wang J  Yang Y  Chu Y  Li X  Guang Y  Huang J 《PloS one》2011,6(12):e29500

Background

Identification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.

Methodology/Principal Findings

To identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.

Conclusions/Significance

Targeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed.  相似文献   

11.
12.
13.
We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA.  相似文献   

14.
15.
The complete assimilatory nitrate reductase (NR) gene from the pennate diatom Phaeodactylum triconutum Bohlin was sequenced from cDNA and compared with NR sequences from fungi, green algae, vascular plants, and the recently sequenced genome of the centric diatom Thalassiosira pseudonana Hasle and Heimdal CCMP1335. In all the major eukaryotic nitrate reductase (Euk‐NR) functional domains, diatom NR gene sequences are generally 50%–60% identical to plant and alga sequences at the amino acid level. In the less conserved N‐terminal, hinge 1, and hinge 2 regions, homology to other NR sequences is weak, generally<30%. Two PCR primer sets capable of amplifying Euk‐NR from plants, algae, and diatoms were designed. One primer set was used to amplify a 750‐base pair (bp) NR fragment from the cDNA of five additional diatom strains. The PCR amplicon spans part of the well‐conserved dimer interface region, the more variable hinge 1 region, and part of the conserved cytochrome b heme binding region. The second primer set, targeted to the dimer region, was used to amplify an approximately 400‐bp fragment of the NR gene from DNA samples collected in Monterey Bay, California and in central New Jersey inner continental shelf (LEO‐15 site) waters. Only diatom‐like NR sequences were recovered from Monterey Bay samples, whereas LEO‐15 samples yielded NR sequences from a range of photosynthetic eukaryotes. The prospect of using DNA‐ and RNA‐based methods to target the NR genes of diatoms specifically is a promising approach for future physiological and ecological experiments.  相似文献   

16.
The base‐editing technique using CRISPR/nCas9 (Cas9 nickase) or dCas9 (deactivated Cas9) fused with cytidine deaminase is a powerful tool to create point mutations. In this study, a novel G. hirsutum‐Base Editor 3 (GhBE3) base‐editing system has been developed to create single‐base mutations in the allotetraploid genome of cotton (Gossypium hirsutum). A cytidine deaminase sequence (APOBEC) fused with nCas9 and uracil glycosylase inhibitor (UGI) was inserted into our CRISPR/Cas9 plasmid (pRGEB32‐GhU6.7). Three target sites were chosen for two target genes, GhCLA and GhPEBP, to test the efficiency and accuracy of GhBE3. The editing efficiency ranged from 26.67 to 57.78% at the three target sites. Targeted deep sequencing revealed that the C→T substitution efficiency within an ‘editing window’, approximately six‐nucleotide windows of ?17 to ?12 bp from the PAM sequence, was up to 18.63% of the total sequences. The 27 most likely off‐target sites predicted by CRISPR‐P and Cas‐OFFinder tools were analysed by targeted deep sequencing, and it was found that rare C→T substitutions (average < 0.1%) were detected in the editing windows of these sites. Furthermore, whole‐genome sequencing analyses on two GhCLA‐edited and one wild‐type plants with about 100× depth showed that no bona fide off‐target mutations were detectable from 1500 predicted potential off‐target sites across the genome. In addition, the edited bases were inherited to T1 progeny. These results demonstrate that GhBE3 has high specificity and accuracy for the generation of targeted point mutations in allotetraploid cotton.  相似文献   

17.
Microsatellite‐enriched genomic libraries were obtained from the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) using a magnetic/biotin capture of repetitive sequences. Ten dinucleotide markers were successfully isolated and characterized from these libraries. Variability was assessed in six populations of B. tabaci collected from different localities of the island of Crete, Greece. The number of alleles per locus in approximately 105 individuals screened across populations ranged from two to 13. Averaged observed heterozygosity over the six populations ranged from 0.001 to 0.58.  相似文献   

18.
Wild crop relatives represent a source of novel alleles for crop genetic improvement. Screening biodiversity for useful or diverse gene homologues has often been based upon the amplification of targeted genes using available sequence information to design primers that amplify the target gene region across species. The crucial requirement of this approach is the presence of sequences with sufficient conservation across species to allow for the design of universal primers. This approach is often not successful with diverse organisms or highly variable genes. Massively parallel sequencing (MPS) can quickly produce large amounts of sequence data and provides a viable option for characterizing homologues of known genes in poorly described genomes. MPS of genomic DNA was used to obtain species‐specific sequence information for 18 rice genes related to domestication characteristics in a wild relative of rice, Microlaena stipoides. Species‐specific primers were available for 16 genes compared with 12 genes using the universal primer method. The use of species‐specific primers had the potential to cover 92% of the sequence of these genes, while traditional universal primers could only be designed to cover 80%. A total of 24 species‐specific primer pairs were used to amplify gene homologues, and 11 primer pairs were successful in capturing six gene homologues. The 23 million, 36‐base pair (bp) paired end reads, equated to an average of 2X genome coverage, facilitated the successful amplification and sequencing of six target gene homologues, illustrating an important approach to the discovery of useful genes in wild crop relatives.  相似文献   

19.
20.
The fathead minnow Pimephales promelas serves as a model organism for assessing the effects of environmental contaminants on early life stage growth and development. Yet, the utilization of genomic tools has been hindered by the lack of genome sequence and genomic information known from this model species. Utilizing published cDNA library sequences, the authors used sequence similarity to compare 4105 cDNAs isolated from fathead minnow fry (<14 days old) with over 250 000 adult cDNA sequences derived from whole body and various tissue types. The objectives of the computational subtraction were to (1) assess the extent of sequence similarity between developing and adult cDNA libraries and (2) predict which cDNA clones are expressed only in developing organisms. The results of the computational predictions were assessed through the construction of a development‐specific DNA microarray targeting all 4105 sequences in the fry cDNA library as well as 56 known mRNAs in P. promelas. Gene expression was determined by comparing total RNA isolated from fry with total RNA isolated from adult samples (whole animal, kidney, liver, brain, ovary and testes). The results showed that 1381 of the targeted fry cDNA sequences (34%) displayed expression across all sample comparisons, and of these, only 166 genes were found to harbour fry‐specific expression (i.e. no expression in adult samples). Of note, 69% of the genes computationally predicted to be fry specific were found across all experimental results; yet, only 27% of the computationally predicted fry‐specific sequences were experimentally confirmed to be fry specific. An important result was the identification of many novel mRNA sequences specific to the developing minnow, which lack homology with any other known sequence. In addition, the study results included tissue‐specific expression in adult samples. These results demonstrate the capabilities and limitations of inter‐library sequence comparisons as a predictor of gene activity in non‐sequenced organisms and tissues, as well as DNA microarray gene expression studies in non‐sequenced organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号