首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
转基因鱼的研究进展与商业化前景   总被引:3,自引:0,他引:3  
Ye X  Tian YY  Gao FY 《遗传》2011,33(5):494-503
转基因技术为鱼类育种开辟了新的途径。目前已培育出转生长激素基因鲤、鲑和罗非鱼,转荧光蛋白基因斑马鱼与唐鱼等可稳定遗传的转基因鱼品系,其中快长转生长激素基因鱼的获得对于提高水产养殖的产量与养殖效益具有十分重要的意义。文章简要综述了转基因鱼应用研究的成就、相关技术及生态安全方面的研究进展。显微注射仍是目前基因转植的常用方法,应用转座酶或巨核酸酶介导的转基因新技术可提高基因转植效率与整合率。转基因元件的选择应尽量考虑"全鱼"基因或"自源"基因,以减少转基因鱼食用安全方面的顾虑同时也有利于转植基因的表达与生理功效的发挥。生态安全是转基因鱼商用化面临的最大问题。虽然有研究显示转基因鱼与传统的选育鱼类相比适合度较差,但由于环境与基因型间的相互作用,根据实验室获得的转基因鱼对生态影响的结果,难以预测转基因鱼一旦逃逸会对自然水生态环境产生怎样的影响。因此应建立高度自然化的环境以获得可靠的数据客观评价生态风险,有效的物理拦截、不育化处理等生物学控制策略仍是保证转基因鱼安全应用的关键措施。  相似文献   

2.
S. Zhong    Y.-P. Wang    D.-S. Pei    D.-J. Luo    L.-J. Liao    Z.-Y. Zhu 《Journal of fish biology》2009,75(5):1092-1100
It has been demonstrated that growth hormone (GH) transgenic fish often posses a trait for fast growth. Here, we investigated the growth of F4'all-fish' GH transgenic carp Cyprinus carpio and their serum GH levels for a year. The results showed that F4 all-fish GH transgenic carp were significantly larger in body mass ( c . two-fold, P < 0·001) and body length ( c . 1·3 fold, P < 0·001), compared with the non-transgenic group. The discrepancy of serum GH levels between the transgenic carp group and control group is 54 fold, when the water temperature was 12–34° C. When the water temperature decreased to 3·5° C in January, the discrepancy was 256 fold. The serum GH level of the transgenic group was relatively constant, while that of control varied greatly based on month and water temperature. The changes of growth rates between the transgenic group and the control group were similar for a year. Taken together, the results indicated that F4 all-fish GH transgenic carp had not only higher and constant serum GH levels but also a significant fast-growing effect, compared with the control. To our knowledge, this is the first report on a one-year investigation of growth trait and serum growth hormone level in F4 all-fish GH transgenic carp.  相似文献   

3.
4.
Insulin-like growth factor-II (IGF-II) is a member of a growth factor family related to fetal growth in mammals but its physiological role has not been clearly identified in fish. In teleosts, the basic mechanism of the growth hormone (GH)-IGF axis is known to be operative but in a different manner. For instance, IGF-I exhibits GH dependence whereas for IGF-II, its GH dependence varies in different fish species. In this study, we used polymerase chain reaction (PCR) to obtain a common carp IGF-II (ccIGF-II) cDNA fragment and methods of rapid amplification of cDNA ends (RACEs) to obtain a full-length ccIGF-II sequence. The ccIGF-II encodes for a predicted amino acid sequence showing identities of 70.6%, 68.7%, 63.4% and 35% in comparison with salmon, barramundi, tilapia and human IGF-II, respectively. The nucleotide identity between the open reading frame (ORF) of the ccIGF-II and ccIGF-I cDNA sequence is only 36.2%. Distribution of ccIGF-II mRNA levels in common carp tissues was also studied; ccIGF-II expressed in hepatopancreas, heart, and many other tissues in adult carps are similar to the levels of ccIGF-I except in gills and testis. ccIGF-II levels were significantly higher than that of ccIGF-I in most juvenile tissues except in hepatopancreas, where ccIGF-I was higher (threefold) than that of ccIGF-II. The levels of ccIGF-I were also higher than ccIGF-II in carp larvae, from pre-hatched stage to day 30 post-hatching. Injection of porcine GH (pGH) increased the IGF-I and IGF-II mRNA levels in the hepatopancreas and brain of juvenile carps. However, hepatic IGF-I mRNA levels were induced more than IGF-II by pGH, whereas ccIGF-II levels gave a higher response than IGF-I in the brain in response to GH induction.  相似文献   

5.
Insertion of a growth hormone (GH) transgene in coho salmon results in accelerated growth, and increased feeding and metabolic rates. Whether other physiological systems within the fish are adjusted to this accelerated growth has not been well explored. We examined the effects of a GH transgene and feeding level on the antioxidant glutathione and its associated enzymes in various tissues of coho salmon. When transgenic and control salmon were fed to satiation, transgenic fish had increased tissue glutathione, increased hepatic glutathione reductase activity, decreased hepatic activity of the glutathione synthesis enzyme γ-glutamylcysteine synthetase, and increased intestinal activity of the glutathione catabolic enzyme γ-glutamyltranspeptidase. However, these differences were mostly abolished by ration restriction and fasting, indicating that upregulation of the glutathione antioxidant system was due to accelerated growth, and not to intrinsic effects of the transgene. Increased food intake and ability to digest potential dietary glutathione, and not increased activity of glutathione synthesis enzymes, likely contributed to the higher levels of glutathione in transgenic fish. Components of the glutathione antioxidant system are likely upregulated to combat potentially higher reactive oxygen species production from increased metabolic rates in GH transgenic salmon.  相似文献   

6.
In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax) were observed among size‐matched wild‐type, domesticated, growth hormone (GH)‐transgenic fish fed to satiation, and GH‐transgenic fish on a ration‐restricted diet. Instead, GH‐transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH‐transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits.  相似文献   

7.
The growth hormone (GH) is a pluripotent hormone produced by the pituitary in vertebrates. It plays important roles in the growth, development, and metabolism of vertebrates.We cloned GH cDNA sequence of Pampus argenteus (GenBank: KT257176). Multi‐sequence analysis revealed P. argenteus GH cDNA contained four conservative cysteine residues positions (Cys69, Cys177, Cys194, and Cys202) and shared more than 51.5% identity with homologues from other reported bony fish GHs, except that of Lepisosteus osseus. We used semi‐quantitative RT‐PCR and quantitative real‐time PCR to detect GH expression in 10 tissues and GH expression levels in the pituitary at six different growth stages, and also detected GH content in serum at different growth stages . qPCR showed that GH mRNA was detected in the liver, muscle, kidney, intestine, pituitary, olfactory bulb, stomach, heart, gill, and ovary. The highest level of P. argenteus GH mRNA was observed in the pituitary (P < 0.01, n = 3). At different growth stages, P. argenteus GH expression first increased, decreased, and increased again. GH gene expression levels and the variations of serum GH levels of P. argenteus were consistent with the growth rate and associated with the sexual maturity. In addition, in situ hybridization was used to locate the GH expression in pituitary. In situ hybridization showed that the GH‐positive cells were round, oval, or irregular and often gathered into groups or presented branches along the nerve fibers.  相似文献   

8.
Growth hormone (GH) gene transgenesis has allowed the production of salmon with an inherently increased growth potential, on average two to threefold higher compared with daily specific growth rates observed in normal, non‐transgenic fish. This difference quickly results in animals of very different sizes at age, and is associated with specific morphological effects and enhanced appetites in transgenic animals. However, less is known of the feeding and antipredator behaviour of GH‐transgenic fish, information that can help with predictions of potential ecological consequences of release or escape of transgenic fish into the wild. In a series of experiments, transgenic (T) and normal (N) coho salmon of varying age and size (from 0.5 to 40 g, 3.5–21 mo) were studied singly, in pairs, and in groups during feeding and simulated predation threat. Vertical position generally did not differ between T and N fry, but at larger size (>4 g) T fish remained closer to the surface than N fish both during feeding and predatory attacks, probably as a consequence of inherent differences in feeding motivation and later reinforcement by associative learning. This difference in vertical position was not the result of competition as it remained even after either fish in the pair had been removed. In nature, where predators may attack from above (birds) or below (fish), this kind of behaviour may translate into higher risk of predation, which could increase mortality and lower the fitness of transgenic fish, unless their increased growth rate can compensate for the increased risk‐taking.  相似文献   

9.
Intestinal morphology in growth hormone transgenic coho salmon   总被引:1,自引:0,他引:1  
In two GH transgenic coho salmon Oncorhynchus kisutch , the surface area of the intestine was 2·2 times that of control salmon and the growth rate was about twice that of controls. It seems likely that the enhanced intestinal surface area is a compensatory feature that is manifested in fast growing salmonids.  相似文献   

10.
1. Growth hormone (GH) treatment increases the growth rate and competitive ability of salmonids under laboratory conditions. Since fast growth should increase fitness, why is endogenous secretion of GH not higher in wild fish? To address this question, three hypotheses were suggested. H1: high GH levels reduce antipredator responses and may therefore increase mortality from predation. H2: high GH levels reduce long-term (e.g. over winter) survival by reducing allocation to critical energy reserves. H3: GH is not beneficial for growth under natural conditions.
2. To test these hypotheses, the performance of GH-treated juvenile Brown Trout ( Salmo trutta ) and control (placebo) trout was compared in an enclosed stream section subjected to natural predation. Four experiments were conducted during winter, spring, summer and autumn, respectively.
3. Mortality rates were not significantly different between GH-treated and control trout in any of the four experiments so H1 was not supported. Energy reserves were generally lower in GH-treated fish, which is consistent with H2, whereas growth rates in mass were higher in GH-treated fish than in controls so H3 was not supported. This suggests that GH promotes growth at the expense of investment in maintenance.
4. Judging from growth and mortality rates, the fitness of GH-treated and control trout appeared similar. Thus, escaped GH-manipulated fish may compete successfully with wild fish.
5. Hatchery-raised trout with higher initial condition index suffered higher mortality rates than more slender fish. This novel finding may be explained by reduced escape ability related to body morphology, reduced behavioural responses towards predators by high-condition trout, or predator preferences for high-condition fish.  相似文献   

11.
Potential ecological consequences on the natural environment of fast‐growing transgenic fish with elevated intrinsic growth rates is an important question should such fish be allowed in commercial production systems. One trait that will strongly affect the spatial extent of consequences is the propensity of transgenic fish to disperse. We addressed this question in three experiments using different measures of spatial dispersal where we compared very young genotypically wild coho salmon with transgenic conspecifics in terms of: (i) group cohesion, (ii) exploratory behavior, and (iii) up‐ and downstream movements. Transgenic fish were more loosely aggregated, more likely to explore, and less likely to swim upstream, but equally likely to disperse downstream compared with genetically wild fish. These results show that dispersal behavior has been affected by transgenesis and that transgenic fish therefore may venture into habitats previously not used by wild fish. Given the importance of dispersal in ecological risk‐assessment of transgenic fish, continued work within this area is warranted and experimental habitats should mimic the potential receiving natural habitats to which transgenic fish are likely to escape or be released to.  相似文献   

12.
转大麻哈鱼生长激素基因鲤生态安全性检测与分析   总被引:2,自引:0,他引:2  
评价了转大麻哈鱼(Oncorhynchus Suckley)生长激素基因鲤生态安全性问题及研究转基因鱼对天然野生鲤群体遗传污染程度。通过RAPD和SSLP方法,用265个RAPD标记和35对鲤的微卫星标记对受杂交鲤污染的哈尔滨江段黑龙江鲤群体、未受污染的抚远江段黑龙江鲤群体及模拟转基因鲤占普通鲤群体的1%和10%比例获得繁殖子代等实验群体的DNA样本进行全基因组扫描统计分析得出结论,即转基因鲤占普通鲤群体1%时对普通群体的基因污染程度是微乎其微的,远远低于杂交鲤对野生群体基因污染,转基因鲤占普通鲤群体10%时对普通鲤遗传背景的影响稍有升高,但仍然远远低于杂交鲤对野生群体基因污染程度。总之,在现有的检测技术条件及有效的监控条件下,与杂交鲤相比转基因鲤对鲤野生群体的遗传背景的影响是微弱的,而外来种和杂交种则对生态环境有严重威胁。  相似文献   

13.
两种不同终止子在转基因鲤鱼中的促生长效应   总被引:2,自引:2,他引:0  
钟山  罗大极  吴刚  徐婧  汪亚平  朱作言 《遗传》2009,31(8):831-836
转基因构建体中启动子的选择会直接影响转植基因的活性, 近年来有研究表明转基因构建体中终止子的选择会一定程度地影响转植基因的活性。为了更好地筛选转基因构建体和培育快速生长的转“全鱼”生长激素(Growth hormone, GH)基因鱼, 文章用鲤鱼β-actin基因终止子和生长激素基因终止子分别构建了转基因构建体, 显微注射得到转“全鱼”GH基因鱼P0代养殖群体, 比较两种不同终止子构建体的活性。统计分析发现, 生长激素基因终止子构建体的养殖群体的体重频率呈正态分布且平均体重显著高于β-actin基因终止子构建体的养殖群体, β-actin基因终止子构建体的养殖群体的体重频率呈右倾趋势的非正态分布。值得一提的是在混合养殖组中得到一条生长最为快速的鲤鱼证实为转基因阳性且为生长激素基因终止子构建体的转基因鲤鱼。该结果表明转“全鱼”生长激素基因鲤鱼可快速生长, 并能将转植基因向下代遗传。实验结果提示生长激素基因终止子构建体比β-actin基因终止子构建体表现的促生长活性要强。  相似文献   

14.
The competitive ability and habitat selection of juvenile all‐fish GH‐transgenic common carp Cyprinus carpio and their size‐matched non‐transgenic conspecifics, in the absence and presence of predation risk, under different food distributions, were compared. Unequal‐competitor ideal‐free‐distribution analysis showed that a larger proportion of transgenic C. carpio fed within the system, although they were not overrepresented at a higher‐quantity food source. Moreover, the analysis showed that transgenic C. carpio maintained a faster growth rate, and were more willing to risk exposure to a predator when foraging, thereby supporting the hypothesis that predation selects against maximal growth rates by removing individuals that display increased foraging effort. Without compensatory behaviours that could mitigate the effects of predation risk, the escaped or released transgenic C. carpio with high‐gain and high‐risk performance would grow well but probably suffer high predation mortality in nature.  相似文献   

15.
Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are capable of successful spawning, and can reproduce with wild-type fish from natural systems.  相似文献   

16.
The aim of the present study was to purify the common native carp growth hormone (ncGH), produce monoclonal antibodies (mAbs) to common native carp growth hormone (ncGH), and further enhance the sensitivity of enzyme-linked immunosorbent assays (ELISA) for ncGH. Additionally, we investigated changes in serum ncGH levels in carps raised in different environmental conditions. The recombinant grass carp (Ctenopharyngodon idella) growth hormone was purified and used as antigen to immunize the rabbit. The natural ncGH was isolated from the pituitaries of common carp. SDS-PAGE and Western blot utilizing the polyclonal anti-rgcGH antibody confirmed the purification of ncGH from pituitaries. Purified ncGH was then used as an immunogen in the B lymphocyte hybridoma technique. A total of 14 hybridoma cell lines (FMU-cGH 1–14) were established that were able to stably secrete mAbs against ncGH. Among them, eight clones (FMU-cGH1–6, 12 and 13) were successfully used for Western blot while nine clones (FMU-cGH 1–7, 9 and 10) were used in fluorescent staining and immunohistochemistry. Epitope mapping by competitive ELISA demonstrated that these mAbs recognized five different epitopes. A sensitive sandwich ELISA for detection of ncGH was developed using FMU-cGH12 as the coating mAb and FMU-cGH6 as the enzyme labeled mAb. This detection system was found to be highly stable and sensitive, with detection levels of 70 pg/mL. Additionally, we found that serum ncGH levels in restricted food group and in the net cage group increased 6.9-and 5.8-fold, respectively, when compared to controls, demonstrating differences in the GH stress response in common carp under different living conditions.  相似文献   

17.
The aim of the present study was to purify the common native carp growth hormone (ncGH), produce monoclonal antibodies (mAbs) to common native carp growth hormone (ncGH), and further enhance the sensitivity of enzyme-linked immunosorbent assays (ELISA) for ncGH. Additionally, we investigated changes in serum ncGH levels in carps raised in different environmental conditions. The recombinant grass carp (Ctenopharyngodon idella) growth hormone was purified and used as antigen to immunize the rabbit. The natural ncGH was isolated from the pituitaries of common carp. SDS-PAGE and Western blot utilizing the polyclonal anti-rgcGH antibody confirmed the purification of ncGH from pituitaries. Purified ncGH was then used as an immunogen in the B lymphocyte hybridoma technique. A total of 14 hybridoma cell lines (FMU-cGH 1-14) were established that were able to stably secrete mAbs against ncGH. Among them, eight clones (FMU-cGH1-6, 12 and 13) were successfully used for Western blot while nine clones (FMU-cGH 1-7, 9 and 10) were used in fluorescent staining and immunohistochemistry. Epitope mapping by competitive ELISA demonstrated that these mAbs recognized five different epitopes. A sensitive sandwich ELISA for detection of ncGH was developed using FMU-cGH12 as the coating mAb and FMU-cGH6 as the enzyme labeled mAb. This detection system was found to be highly stable and sensitive, with detection levels of 70 pg/mL. Additionally, we found that serum ncGH levels in restricted food group and in the net cage group increased 6.9-and 5.8-fold, respectively, when compared to controls, demonstrating differences in the GH stress response in common carp under different living conditions.  相似文献   

18.
Myostatin belongs to the transforming growth factor (TGF)-β superfamily and is a potent negative regulator of skeletal muscle development and growth. We utilized microinjection of an antisense RNA-expressing vector to establish a hereditarily stable myostatin gene knockdown zebrafish strain with a double-muscle phenotype. Real-time PCR and immunostaining revealed that the myostatin messenger (m)RNA and protein levels in homozygous transgenic zebrafish were 33% and 26% those of the non-transgenic controls, respectively. Also, the mRNA levels of myogenic regulatory factor markers such as MyoD, myogenin, Mrf4, and Myf5 were dramatically elevated in myostatin-suppressed transgenic fish compared to the non-transgenic controls. Although there was no significant difference in body length, homozygous transgenic zebrafish were 45% heavier than non-transgenic controls. Histochemical analysis showed that the cross-sectional area of the muscle fiber of homozygous transgenic fish was twice as large as that of non-transgenic controls. This is the first model zebrafish with a hereditarily stable myostatin-suppressed genotype and a double-muscle phenotype.  相似文献   

19.
Rahman  M. Azizur  Mak  Rohan  Ayad  Hala  Smith  Alan  Maclean  Norman 《Transgenic research》1998,7(5):357-370
Several lines of transgenic G1 and G2 tilapia fish (Oreochromis niloticus) have been produced following egg injection with gene constructs carrying growth hormone coding sequences of fish origin. Using a construct in which an ocean pout antifreeze promoter drives a chinook salmon growth hormone gene, dramatic growth enhancement has been demonstrated, in which the mean weight of the 7 month old G2 transgenic fish is more than three fold that of their non transgenic siblings. Somewhat surprisingly G1 fish transgenic for a construct consisting of a sockeye salmon metallothionein promoter spliced to a sockeye salmon growth hormone gene exhibited no growth enhancement, although salmon transgenic for this construct do show greatly enhanced growth. The growth enhanced transgenic lines were also strongly positive in a radio-immuno assay for the specific hormone in their serum, whereas the non growth enhanced lines were negative. Attempts to induce expression from the metallo thionein promoter by exposing fish to increased levels of zinc were also unsuccessful.Homozygous transgenic fish have been produced from the ocean pout antifreeze/chinook salmon GH construct and preliminary trials suggest that their growth performance is similar to that of the hemizygous transgenics. No abnormalities were apparent in the growth enhanced fish, although minor changes to skull shape and reduced fertility were noted in some fish. There is also preliminary evidence for improved food conversion ratios when growth enhanced transgenic tilapia are compared to their non-transgenic siblings.The long term objective of this study is to produce lines of tilapia which are both growth enhanced and sterile, so offering improved strains of this important food fish for aquaculture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号