首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing evidence that most parapatric cryptic/sister taxa are reproductively compatible across their areas of contact. Consequently, the biological species concept, which assumes absence of interbreeding, is becoming a not so effective criterion in evolutionary ecology. Nevertheless, the few parapatric sister taxa showing complete reproductive barriers represent interesting models to study speciation processes and the evolution of reproductive isolation. In this study, we examined contact populations in northwestern Italy of two butterfly species, Zerynthia polyxena and Z. cassandra, characterized by different genitalic morphotypes. We studied levels of divergence among 21 populations distributed from Sicily to France using three genetic markers (the mitochondrial COI and ND1 genes and the nuclear wingless gene) and genitalic geometric morphometrics. Moreover, we performed species distribution modelling to estimate different climatic requirements of Z. polyxena and Z. cassandra. We projected climatic data into glacial maximum scenarios in order to verify if and to which extent glacial cycles could have contributed to speciation processes. Genetic and morphometric analyses identified two main groups. All specimens showed a concordant pattern of diversification, including those individuals sampled in the contact area. Haplotype distribution and climatic models showed that during glacial maxima both species experienced a strong range contraction and presumably remained separated into different microrefugia in southern France, in the Italian Peninsula and on the islands of Elba and Sicily. Long term separation was probably favoured by reduced dispersal ability and high phylopatry, while genitalic diversification probably favoured interbreeding avoidance. Conversely, the aposematic wing pattern remained almost identical. We compared our results with those obtained in other species and concluded that Z. polyxena and Z. cassandra represent a valuable model in the study of speciation.  相似文献   

2.
Species endemic to alpine environments can evolve via steep ecological selection gradients between lowland and upland environments. Additionally, many alpine environments have faced repeated glacial episodes over the past two million years, fracturing these endemics into isolated populations. In this “glacial pulse” model of alpine diversification, cycles of allopatry and ecologically divergent glacial refugia play a role in generating biodiversity, including novel admixed (“fused”) lineages. We tested for patterns of glacial pulse lineage diversification in the Yosemite toad (Anaxyrus [Bufo] canorus), an alpine endemic tied to glacially influenced meadow environments. Using double‐digest RADseq on populations densely sampled from a portion of the species range, we identified nine distinct lineages with divergence times ranging from 18 to 724 thousand years ago (ka), coinciding with multiple Sierra Nevada glacial events. Three lineages have admixed origins, and demographic models suggest these fused lineages have persisted throughout past glacial cycles. Directionality indices supported the hypothesis that some lineages recolonized Yosemite from east of the ice sheet, whereas other lineages remained in western refugia. Finally, refugial niche reconstructions suggest that low‐ and high‐elevation lineages have convergently adapted to similar climatic niches. Our results suggest glacial cycles and refugia may be important crucibles of adaptive diversity across deep evolutionary time.  相似文献   

3.
Aim Climatic changes and fluctuations in the past have strongly influenced the distribution of animal and plant species. Such fluctuations are also reflected in the patterns of genetic diversity on both local and global scales. The genetic pattern of the pearly heath butterfly, Coenonympha arcania, was used to evaluate the genetic differentiation of isolated (in north‐western Europe), peripheral (in north‐eastern Europe) and central (in southern Europe) populations in the context of post‐glacial distributional changes of the species. Location Europe (Sweden, Germany, the Baltic states, Italy, Slovenia, Hungary, Romania, Bulgaria). Thus, samples were collected from large parts of the species’ distribution representing the three categories mentioned above. Methods We analysed 18 loci of 569 individuals from 28 populations by allozyme electrophoresis. We used both individual‐based and population‐based analyses, including F‐statistics, various clustering methods and Markov chain Monte Carlo simulations. Results All loci, except Fum, were polymorphic. The mean FST for all samples was 0.18. The mean genetic distance among populations was 0.046. Two major genetic lineages were distinguished. Populations from the centre of the distributional range in southern Europe and the northern periphery of the distributional range differed significantly in their level of genetic variability. The central populations of south‐eastern Europe showed high levels of genetic diversity and no differentiation among populations. Main conclusions Most probably the two major genetic lineages evolved during glacial isolation in two disjunct Mediterranean refugia. The lack of genetic differentiation across south‐eastern Europe implies a continuous Würm ice age distribution in this area, thus supporting the functional existence of steppe forests throughout this region. The peripheral‐isolated populations in Sweden seem to have suffered from one or more severe bottlenecks, resulting in substantial genetic impoverishment. The peripheral‐connected eastern Baltic populations, on the other hand, are affected by post‐glacial and possibly recurrent gene flow from more central parts of the distribution.  相似文献   

4.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

5.
  • Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
  • The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
  • Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
  • Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
  相似文献   

6.
The Southern festoon, Zerynthia polyxena, is a south-European butterfly listed in Annex IV of the Habitats Directive (92/43/EEC). Populations from most of the Italian territory have been recently recognized as belonging to a separate species, endemic to Italy: Zerynthia cassandra. In the province of Bologna (northern Italy), Z. cassandra is quite common. The territory of the province is densely inhabited and modified by man. Semi-natural environments are found almost exclusively in the hills, while the plain is almost entirely built-upon or cultivated. This study was based on data collected in the field in the province of Bologna, and aimed to investigate some biological and ecological aspects of Z. cassandra, with the purpose of identifying the factors that favour its presence and the most relevant issues for its conservation. In the area of study, the hostplant of Z. cassandra is Aristolochia rotunda, which is common in the plain, along the edges of drainage canals, where it supports a large Z. cassandra population. In the hills, A. rotunda is scarcer, and Z. cassandra is present in small separated nodes. Human activities such as mowing and canal maintenance are potentially damaging to Z. cassandra, particularly if carried out when eggs and larvae are present. However, if correctly timed and executed, such maintenance can preserve grassy areas that would otherwise be colonized by bushes and trees, and in which A. rotunda finds a suitable environment. Some level of disturbance can be beneficial for Z. cassandra habitats, favouring the species’ survival in the long term.  相似文献   

7.
The phylogeography of the European wild boar was mainly determined by postglacial recolonization patterns from Mediterranean refugia after the last ice age. Here we present the first analysis of SNP polymorphism within the complete mtDNA genome of West Russian (n = 8), European (n = 64), and North African (n = 5) wild boar. Our analyses provided evidence of unique lineages in the East‐Caucasian (Dagestan) region and in Central Italy. A phylogenetic analysis revealed that these lineages are basal to the other European mtDNA sequences. We also show close connection between the Western Siberian and Eastern European populations. Also, the North African samples were clustered with the Iberian population. Phylogenetic trees and migration modeling revealed a high proximity of Dagestan sequences to those of Central Italy and suggested possible gene flow between Western Asia and Southern Europe which was not directly related to Northern and Central European lineages. Our results support the presence of old maternal lineages in two Southern glacial refugia (i.e., Caucasus and the Italian peninsula), as a legacy of an ancient wave of colonization of Southern Europe from an Eastern origin.  相似文献   

8.
Only three saproxylic species of Pyrochroinae (Coleoptera: Pyrochroidae) are distributed in Europe, two of which belonging to Pyrochroa: P. coccinea and P. serraticornis. However, P. serraticornis is polytypic, for the presence of the endemic subspecies P. s. kiesenwetteri in southern Italy. Using both molecular and morphological data, we explored the phylogeny of the European Pyrochroa species. A multilocus (COI, CAD, 28S) phylogenetic analysis helped highlight different evolutionary histories for the two examined species. First, P. coccinea, distributed throughout Europe, showed a high differentiation among Italian and European populations. Furthermore, three different taxonomic entities were identified within P. serraticornis, among which the cryptic species Pyrochroa bifoveata sp. n. from central Europe is described and illustrated. A comprehensive identification key to the European Pyrochroinae is also provided. Our results also suggested an historical survival of P. coccinea and P. s. kiesenwetteri in glacial refugia in Italy, and a subsequent post-glacial spread of the former species throughout the Peninsula. In contrast, the current distribution of P. s. serraticornis likely originated from a post-glacial colonization of western European relict populations, while the survival of P. bifoveata plausibly occurred in more eastern glacial refugia (e.g. Carpathian or Balkan regions). Similarly, the European populations of P. coccinea could have originated from relict populations in glacial refugia out from the Italian Peninsula. More comprehensive data on the taxonomy, ecology and biogeography of Pyrochroa are needed to learn more about these species and to help preserve the European saproxylic fauna.  相似文献   

9.
Fairy shrimp (Crustacea: Anostraca) are specialist inhabitants of temporary aquatic habitats. In many parts of the world and particularly in Western Europe, however, populations are declining while the development of adequate conservation strategies is impeded by a poor knowledge of the genetic structure and taxonomic status of remaining lineages. We reconstructed a phylogeography of the species Chirocephalus diaphanus Prévost, 1803 using partial sequences of the mitochondrial COI gene and discuss the importance of different Pleistocene refugia to explain current diversity patterns. In addition to 20 C. diaphanus populations, we also included populations of six presumably closely related chirocephalids to evaluate their taxonomic status. Based on molecular data, the Eastern European subspecies C. diaphanus romanicus deserves species status while the species status of two Italian chirocephalids, C. salinus and C. ruffoi is questionable. Results indicate European C. diaphanus lineages diverged well before the last glacial maximum and survived the Pleistocene glaciations in multiple (sub)refugia along the Iberian, Italian, and Balkan peninsula. Northern Europe was subsequently recolonized from Southern France, resulting in high levels of cryptic diversity around glacial refugia but also in more widespread haplotypes in mainland Europe.  相似文献   

10.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

11.
Despite recent advances in the understanding of the interplay between a dynamic physical environment and phylogeography in Europe, the origins of contemporary Irish biota remain uncertain. Current thinking is that Ireland was colonized post-glacially from southern European refugia, following the end of the last glacial maximum (LGM), some 20 000 years BP. The Leisler''s bat (Nyctalus leisleri), one of the few native Irish mammal species, is widely distributed throughout Europe but, with the exception of Ireland, is generally rare and considered vulnerable. We investigate the origins and phylogeographic relationships of Irish populations in relation to those across Europe, including the closely related species N. azoreum. We use a combination of approaches, including mitochondrial and nuclear DNA markers, in addition to approximate Bayesian computation and palaeo-climatic species distribution modelling. Molecular analyses revealed two distinct and diverse European mitochondrial DNA lineages, which probably diverged in separate glacial refugia. A western lineage, restricted to Ireland, Britain and the Azores, comprises Irish and British N. leisleri and N. azoreum specimens; an eastern lineage is distributed throughout mainland Europe. Palaeo-climatic projections indicate suitable habitats during the LGM, including known glacial refugia, in addition to potential novel cryptic refugia along the western fringe of Europe. These results may be applicable to populations of many species.  相似文献   

12.
The high mountain ranges of Western Europe had a profound effect on the biotic recolonization of Europe from glacial refugia. The Alps present a particularly interesting case because they form an absolute barrier to dispersal for most taxa, obstructing recolonization from multiple refugia in northern Italy. Here, we investigate the effect of the European Alps on the phylogeographic history of the European common frog Rana temporaria. Based on partial cytochrome b and COXI sequences from Switzerland, we find two mitochondrial lineages roughly north and south of the Alpine ridge, with contact zones between them in eastern and western Switzerland. The northern haplogroup falls within the previously identified Western European haplogroup, while the southern haplogroup is unique to Switzerland. We find that the lineages diverged ~110 kya, at approximately the onset of the last glacial glaciation; this indicates that they are from different glacial refugia. Phylogenetic analyses suggest that the northern and southern haplogroups colonized Switzerland via trans‐ and circum‐Alpine routes from at least two separate refugia in northern Italy. Our results illustrate how a complex recolonization history of the central European Alps can arise from the semi‐permeable barrier created by high mountains.  相似文献   

13.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

14.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

15.
Aim To analyse patterns of nuclear and mitochondrial genetic variation in the European chub, Squalius cephalus (Linnaeus, 1758), in order to understand the evolutionary history of this species and to test biogeographical hypotheses for the existence of co‐distributed European freshwater fish species. Location Rivers in Europe (Finland, Poland, Czech Republic, France, Bulgaria, Spain, Italy). Methods We genotyped 12 polymorphic microsatellite markers derived from 310 individuals collected from across the distribution of S. cephalus in Europe (including a total of 15 populations) and sequenced mitochondrial DNA (mtDNA) from a subset of 75 individuals. Sequences of mtDNA cytochrome b were analysed using both phylogenetic (median‐joining networks) and population genetic methods (tests for demographic history, mismatch distributions, Bayesian coalescent analysis). Geographical structure in microsatellite loci was examined using a distance method (FST), factorial correspondence analysis (FCA) and a Bayesian clustering method (structure ). Results The mtDNA network showed a clear split into four different haplogroup lineages: Western (separated into Atlantic and Danubian sublineages), Eastern, Aegean (occurring in two distinct sublineages in the Balkans and in Spain) and Adriatic. Our results indicate recent population expansion in the Eastern and Western Atlantic lineages and the admixture of two previously separate sublineages (Atlantic and Danubian) in the Western lineage. Bayesian structure analysis as well as FCA results roughly corresponded to the mtDNA‐based structure, separating the sampled individuals into almost non‐overlapping groups. Main conclusions Our results support hypotheses suggesting origins of extant lineages of freshwater fishes in multiple refugia and the subsequent post‐glacial colonization of Europe via different routes. We confirmed the previously proposed two‐step expansion scenario from the Danube refuge, the existence of a secondary (Atlantic) refuge during the last glaciation (probably in the Rhone River) and population expansion of this lineage. Conspicuous divergences among Mediterranean populations reflect their different origin, as well as their low contribution to the recent genetic pool of chub in central Europe.  相似文献   

16.
Our understanding of the effect of Pleistocene climatic changes on the biodiversity of European mammals mostly comes from phylogeographical studies of non‐subterranean mammals, whereas the influence of glaciation cycles on subterranean mammals has received little attention. The lack of data raises the question of how and to what extent the current amount and distribution of genetic variation in subterranean mammals is the result of Pleistocene range contractions/expansions. The common mole (Talpa europaea) is a strictly subterranean mammal, widespread across Europe, and represents one of the best candidates for studying the influence of Quaternary climatic oscillation on subterranean mammals. Cytochrome b sequences, as obtained from a sampling covering the majority of the distribution area, were used to evaluate whether Pleistocene climate change influenced the evolution of T. europaea and left a trace in the genetic diversity comparable to that observed in non‐subterranean small mammals. Subsequently, we investigated the occurrence of glacial refugia by comparing the results of phylogeographical analysis with species distribution modelling. We found three differentiated mitochondrial DNA lineages: two restricted to Spain and Italy and a third that was widespread across Europe. Phylogenetic inferences and the molecular clock suggest that the Spanish moles represent a highly divergent and ancient lineage, highlighting for the first time the paraphyly of T. europaea. Furthermore, our analyses suggest that the genetic break between the Italian and the European lineages predates the last glacial phase. Historical demography and spatial principal component analysis further suggest that the Last Glacial Maximum left a signature both in the Italian and in the European lineages. Genetic data combined with species distribution models support the presence of at least three putative glacial refugia in southern Europe (France, Balkan Peninsula and Black Sea) during thelast glacial maximum that likely contributed to post‐glacial recolonization of Europe. By contrast, the Italian lineage remained trapped in the Italian peninsula and, according to the pattern observed in other subterranean mammals, did not contribute to the recolonization of northern latitudes. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 495–512.  相似文献   

17.
The combined actions of climatic variations and landscape barriers shape the history of natural populations. When organisms follow their shifting niches, obstacles in the landscape can lead to the splitting of populations, on which evolution will then act independently. When two such populations are reunited, secondary contact occurs in a broad range of admixture patterns, from narrow hybrid zones to the complete dissolution of lineages. A previous study suggested that barn owls colonized the Western Palearctic after the last glaciation in a ring-like fashion around the Mediterranean Sea, and conjectured an admixture zone in the Balkans. Here, we take advantage of whole-genome sequences of 94 individuals across the Western Palearctic to reveal the complex history of the species in the region using observational and modeling approaches. Even though our results confirm that two distinct lineages colonized the region, one in Europe and one in the Levant, they suggest that it predates the last glaciation and identify a secondary contact zone between the two in Anatolia. We also show that barn owls recolonized Europe after the glaciation from two distinct glacial refugia: a previously identified western one in Iberia and a new eastern one in Italy. Both glacial lineages now communicate via eastern Europe, in a wide and permeable contact zone. This complex history of populations enlightens the taxonomy of Tyto alba in the region, highlights the key role played by mountain ranges and large water bodies as barriers and illustrates the power of population genomics in uncovering intricate demographic patterns.  相似文献   

18.
There is an ongoing debate about the glacial history of non‐arctic species in central and northern Europe. The two main hypotheses are: (1) postglacial colonization from refugia outside this region; (2) glacial survival in microclimatically favourable sites within the periglacial areas. In order to clarify the glacial history of a boreo‐montane tall forb, we analysed AFLPs from populations of Cicerbita alpina through most of its range (Scandinavia, the mountains of central Europe, the Alps, the Pyrenees and the Balkan Peninsula). We found a major differentiation between the Pyrenean population and all others, supported by principal coordinate, neighbour joining and STRUCTURE analyses. Furthermore, three populations from the central and north‐eastern Alps were genetically distinct from the bulk of populations from Scandinavia, central Europe, the Alps and the Balkan Peninsula. Most populations, including those from central and northern Europe, had moderate to high levels of genetic diversity (mean Shannon index HSh = 0.292, mean percentage of polymorphic loci P = 54.1%, mean Nei's gene diversity H = 0.195). The results indicate separate glacial refugia in the Pyrenean region and the Italian Alps. Furthermore, they provide evidence of glacial persistence in cryptic refugia north of the Alps, from where Scandinavia and most of the Alps are likely to have been colonized following deglaciation. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 142–154.  相似文献   

19.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

20.
In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent‐based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of ‘bridges’ among populations. Our study highlights the importance of species‐specific ecology in affecting responses to Pleistocene glacial–interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号