首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

3.
The present study examines chromosome and genome size evolution in Luzula (woodrush; Juncaceae), a monocot genus with holocentric chromosomes. Detailed karyotypes and genome size estimates were obtained for seven Luzula spp., and these were combined with additional data from the literature to enable a comprehensive cytological analysis of the genus. So that the direction of karyotype and genome size changes could be determined, the cytological data were superimposed onto a phylogenetic tree based on the trnL‐F and internal transcribed spacer (ITS) DNA regions. Overall, Luzula shows considerable cytological variation both in terms of chromosome number (2n = 6–66) and genome size (15‐fold variation; 2C = 0.56–8.51 pg; 547.7–8322.8 Mb). In addition, there is considerable diversity in the genomic mechanisms responsible, with the range of karyotypes arising via agmatoploidy (chromosome fission), symploidy (chromosome fusion) and/or polyploidy accompanied, in some cases, by the amplification or elimination of DNA. Viewed in an evolutionary framework, no broad trend in karyotype or genome evolution was apparent across the genus; instead, different mechanisms of karyotype evolution appear to be operating in different clades. It is clear that Luzula exhibits considerable genomic flexibility and tolerance to large, genome‐scale changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 529–541.  相似文献   

4.
The effects of chromosome rearrangement on genome size are poorly understood. While chromosome duplications and deletions have predictable effects on genome size, chromosome fusion, fission, and translocation do not. In this study, we investigate genome size and chromosome number evolution in 87 species of Carex, one of the most species-rich genera of flowering plants and one that has undergone an exceptionally high rate of chromosome rearrangement. Using phylogenetic generalized least-squares regression, we find that the correlation between chromosome number and genome size in the genus grades from flat or weakly positive at fine phylogenetic scales to weakly negative at deeper phylogenetic scales. The rate of chromosome evolution exhibits a significant increase within a species-rich clade that arose approximately 5 million years ago. Genome size evolution, however, demonstrates a nearly constant rate across the entire tree. We hypothesize that this decoupling of genome size from chromosome number helps explain the high lability of chromosome number in the genus, as it reduces indirect selection on chromosome number.  相似文献   

5.
Meiotic drive, the class of meiotic mechanisms that drive unequal segregation of alleles among gametes, may be an important force in karyotype evolution. Its role in holocentric organisms, whose chromosomes lack localized centromeres, is poorly understood. We crossed two individuals of Carex scoparia (Cyperaceae) with different chromosome numbers (2n = 33II = 66 × 2n = 32II = 64) to obtain F1 individuals, which we then self‐pollinated to obtain second‐generation (F2) crosses. RAD‐seq was performed for 191 individuals (including the parents, five F1 individuals and 184 F2 individuals). Our F2 linkage map based on stringent editing of the RAD‐seq data set yielded 32 linkage groups. In the final map, 865 loci were located on a linkage map of 3966.99 cM (linkage groups ranged from 24.39 to 193.31 cM in length and contained 5–51 loci each). Three linkage groups exhibit more loci under segregation distortion than expected by chance; within linkage groups, loci exhibiting segregation distortion are clustered. This finding implicates meiotic drive in the segregation of chromosome variants, suggesting that selection of chromosome variants in meiosis may contribute to the establishment and fixation of chromosome variants in Carex, which is renowned for high chromosomal and species diversity. This is an important finding as previous studies demonstrate that chromosome divergence may play a key role in differentiation and speciation in Carex.  相似文献   

6.
Spittlebugs annually infest pastures and cause severe damage, representing a serious problem for the tropical American beef cattle industry. Spittlebugs are an important biotic constraint to forage production and there is a lack of cytogenetic data for this group of insects. For these reasons, we conducted this work, in which the spermatogenesis and nucleolar behavior of Deois flavopicta, Mahanarva fimbriolata and Notozulia entreriana were studied. The males possessed testes in the shape of a "bunch of grapes"; a variable number of testicular lobes per individual and polyploid nuclei composed of several heteropycnotic bodies. A heteropycnotic area was located in the periphery of the nucleus (prophase I); the chiasmata were terminal or interstitial; metaphases I were circular or linear and anaphase showed late migration of the sex chromosome. The chromosome complement had 2n = 19, except for N. entreriana (2n = 15); the spermatids were round with heteropycnotic material in the center and elongated with conspicuos chromatin. The analysis of testes after silver nitrate staining showed polyploid nuclei with three large and three smaller nucleolar bodies. Early prophase cells had an intensely stained nucleolar body located close to the chromatin and another less evident body located away from the chromatin. The nucleolar bodies disintegrated during diplotene. Silver staining occurred in two autosomes, in terminal and subterminal locations, the latter probably corresponding to the nucleolus organizer regions (NORs). The spermatids were round with a round nucleolar body and silver staining was observed in the medial and posterior region of the elongated part of the spermatid head.  相似文献   

7.
Kobresia species are common in meadows on the Qinghai–Tibet Plateau. They are important food resources for local livestock, and serve a critical foundation for ecosystem integration. Genetic resources of Kobresia species are scarce. Here, we generated a chromosome-level genome assembly for K. myosuroides (Cyperaceae), using PacBio long-reads, Illumina short-reads, and Hi–C technology. The final assembly had a total size of 399.9 Mb with a contig N50 value of 11.9 Mb. The Hi–C result supported a 29 pseudomolecules model which was in consistent with cytological results. A total of 185.5 Mb (44.89% of the genome) transposable elements were detected, and 26,748 protein-coding genes were predicted. Comparative analysis revealed that Kobresia plants have experienced recent diversification events during the late Miocene to Pliocene. Karyotypes analysis indicated that the fission and fusion of chromosomes have been a major driver of speciation, which complied with the lack of whole-genome duplication (WGD) in K. myosuroides genome. Generally, this high-quality reference genome provides insights into the evolution of alpine sedges, and may be helpful to endemic forage improvement and alpine ecosystem preservation.  相似文献   

8.
The European genus Ophrys (Orchidaceae) is famous for its insect‐like floral morphology, an adaptation for a pseudocopulatory pollination strategy involving Hymenoptera males. A large number of endemic Ophrys species have recently been described, especially within the Mediterranean Basin, which is one of the major species diversity hotspots. Subtle morphological variation and specific pollinator dependence are the two main perceptible criteria for describing numerous endemic taxa. However, the degree to which endemics differ genetically remains a challenging question. Additionally, knowledge regarding the factors underlying the emergence of such endemic entities is limited. To achieve new insights regarding speciation processes in Ophrys, we have investigated species boundaries in the Fly Orchid group (Ophrys insectifera sensu lato) by examining morphological, ecological and genetic evidence. Classically, authors have recognized one widespread taxon (O. insectifera) and two endemics (O. aymoninii from France and O. subinsectifera from Spain). Our research has identified clear morphological and ecological factors segregating among these taxa; however, genetic differences were more ambiguous. Insights from cpDNA sequencing and amplified fragment length polymorphisms genotyping indicated a recent diversification in the three extant Fly Orchid species, which may have been further obscured by active migration and admixture across the European continent. Our genetic results still indicate weak but noticeable phylogeographic clustering that partially correlates with the described species. Particularly, we report several isolated haplotypes and genetic clusters in central and southeastern Europe. With regard to the morphological, ecological and genetic aspects, we discuss the endemism status within the Fly Orchid group from evolutionary, taxonomical and conservation perspectives.  相似文献   

9.
10.
11.
《环境昆虫学报》2013,35(5):610-616
本文研究了天牛科3亚科9族20种的染色体核型。在所研究的20种天牛核型中,染色体以10对为主,其性染色体决定机制以Xyp为主。这种性别决定机制被认为是最原始的形式。Xyp,是大X染色体和小y染色体形成的降落伞状(parachute-like)的二价体。在细胞减数分裂中,雄性细胞呈现单倍体数目。研究发现,20种染色体中1/2种类其雄性单倍体数目为10,并且由Xyp型性染色体的性别决定机制。生物活细胞在24 h内均能制作成核型玻片。由于不同生物种类间的核型差异显著,本文对应用核型检测方法检测和鉴定有害生物的可行性进行探讨。  相似文献   

12.
The marine midge Clunio marinus (Chironomidae, Diptera) is characterized by a one‐dimensional distribution along the European Atlantic coast, where its lunar and circadian emergence rhythms are genetically adapted to the local tidal regimes, resulting in a series of ‘temporal races’. Clunio marinus is restricted to rocky coasts and thus the temporal races occur in different rocky patches. We studied 10 populations of Clunio marinus from five different regions, spanning the major rocky mainland coasts from Spain to Norway, using amplified fragment length polymorphisms (AFLP), microsatellites and mitochondrial cytochrome oxidase I (COI) sequences. Star‐like patterns of COI haplotypes within regions indicate postglacial colonization. A high degree of shared polymorphisms in AFLP markers suggests colonization from a single source, implying postglacial evolution of timing adaptations in relation to the local tidal regime. In contrast, no COI haplotypes are shared among regions. We hypothesize that different levels of differentiation of nuclear vs. mitochondrial markers in the source region were carried forward during postglacial expansion. Despite the recent origin of populations, all markers reveal distinct genetic differentiation between rocky coasts on a scale of 650–1150 km. Differentiation between rocky coasts is not correlated to timing adaptations, suggesting that geographic isolation is prevalent between rocky coasts and that this facilitated the evolution of local timing adaptations. At the same time there is little genetic differentiation within rocky coasts on a scale of 2–6 km; leaving open the possibility that within rocky coasts with large variation in tidal regimes, temporal adaptations evolved in the face of gene flow.  相似文献   

13.
AIMS: The objectives were to determine the variability and to compare the genetic diversity obtained using amplified fragment length polymorphism (AFLP) markers in analyses of wine, tequila, mezcal, sotol and raicilla yeasts. METHODS AND RESULTS: A molecular characterization of yeasts isolated from Mexican agave musts, has been performed by AFLP marker analysis, using reference wine strains from Italian and South African regions. CONCLUSIONS: A direct co-relation between genetic profile, origin and fermentation process of strains was found especially in strains isolated from agave must. In addition, unique molecular markers were obtained for all the strains using six combination primers, confirming the discriminatory power of AFLP markers. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of molecular characterization between yeasts isolated from different Mexican traditional agave-distilled beverages, which shows high genetic differences with respect to wine strains.  相似文献   

14.
1. Terrestrial dispersal by aquatic insects increases population connectivity in some stream species by allowing individuals to move outside the structure of the stream network. In addition, individual survival and reproductive success (as well as dispersal) are tightly linked to the quality of the terrestrial habitat. 2. In historically forested catchments, deforestation and altered land use have the potential to interfere with mayfly dispersal or mating behaviours by degrading the quality of the terrestrial matrix among headwater streams. We hypothesised that loss of tree cover in first‐order catchments would be associated with an increase in population substructure and a decrease in genetic diversity of mayfly populations. 3. To test this hypothesis, we investigated spatial patterns of genetic variation in the common mayfly Ephemerella invaria across a gradient of deforestation in the central piedmont region of eastern United States. Intraspecific genetic diversity and population substructure were estimated from data obtained using fluorescent amplified fragment length polymorphism (AFLP) markers. 4. We found that mayfly populations had low population substructure within headwater stream networks and that genetic diversity was strongly negatively correlated with mean deforestation of the first‐order catchments. The large‐scale pattern of population substructure followed a pattern of isolation by distance (IBD) in which genetic differentiation increases with geographical distance, but assignment tests placed a few individuals into populations 300 km away from the collection site. 5. Our results show that loss of genetic diversity in this widespread aquatic insect species is co‐occurring with deforestation of headwater streams. 6. Most arguments supporting protection of headwater streams in the United States have centred on the role of these streams as hydrological and biogeochemical conduits to downstream waters. Our work suggests that headwater stream land use, and specifically tree cover, may have a role in the maintenance of regional genetic diversity in some common aquatic insect species.  相似文献   

15.
Genetic diversity is important for species' fitness and evolutionary processes but our knowledge on how it varies across a species' distribution range is limited. The abundant centre hypothesis (ACH) predicts that populations become smaller and more isolated towards the geographic range periphery – a pattern that in turn should be associated with decreasing genetic diversity and increasing genetic differentiation. We tested this hypothesis in Adonis vernalis, a dry grassland plant with an extensive Eurasian distribution. Its life‐history traits and distribution characteristics suggest a low genetic diversity that decreases and a high genetic differentiation that increases towards the range edge. We analysed AFLP fingerprints in 28 populations along a 4698‐km transect from the geographic range core in Russia to the western range periphery in Central and Western Europe. Contrary to our expectation, our analysis revealed high genetic diversity (range of proportion of polymorphic bands = 56–81%, He = 0.168–0.238) and low genetic differentiation across populations (ΦST = 0.18). However, in congruence with the genetic predictions of the ACH, genetic diversity decreased and genetic differentiation increased towards the range periphery. Spanish populations were genetically distinct, suggesting a divergent post‐glacial history in this region. The high genetic diversity and low genetic differentiation in the remaining Avernalis populations is surprising given the species' life‐history traits and points to the possibility that the species has been widely distributed in the studied region or that it has migrated from a diverse source in an East–West direction, in the past.  相似文献   

16.
A recently developed molecular technique (amplified fragment length polymorphisms, AFLP) was used for characterizing genetic heterogeneity within and among populations of a critically endangered species of plant, Astragalus cremnophylax var. cremnophylax. Using AFLP, up to 50 polymorphic genetic markers per AFLP-PCR amplification were generated, and a total of 220 variable markers overall. This information was used first to assess genetic diversity within each of the three known populations of Astragalus cremnophylax var. cremnophylax from Grand Canyon National Park in Arizona, USA: North Rim (NR; n= 970), South Rim Site 1 (SR1; n= 500), and South Rim Site 2 (SR2; n= 2). Diversity in the form of average heterozygosity (H) and the proportion of polymorphic genes (P) was greatest in the NR population ((H) = 0.13 and (P) = 0.38) and least in the SR2 population ((H) = 0.02 and (P) = 0.04). Diversity was also quite low for the SR1 population ((H) = 0.04 and (P) = 0.10). In addition, substantial genetic differentiation among populations was indicated by both phenetic (AMOVA) and genetic analyses (overall corrected FST= 0.41). This finding was corroborated by the results of several multivariate analyses which utilized the genetic data, including a UPGMA cluster analysis and a principal coordinate analysis which revealed the existence of discrete groups corresponding to the populations. Population structure was further revealed within the NR population which was known to consist of four spatially separated groups of plants. Several recommendations for the future management of the species are discussed.  相似文献   

17.
18.
Hypochaeris palustris (Phil.) De Wild. is a species growing in the southern Andean chain. To elucidate potential Pleistocene refugia and recolonization routes in the southern Andes, we analysed amplified fragment length polymorphisms (AFLPs) in 206 individuals in 21 populations of H. palustris from the coastal Cordillera, the central, northern, and eastern ranges of the southern Andes, and Patagonia. Populations from the coastal Cordillera harboured more private AFLP fragments, and exhibited a higher frequency of polymorphic fragments as well as higher Shannon diversity than all other areas investigated. The comparison among pooled AFLP profiles of each region revealed that the central Andean ranges shared most fragments with populations from the margins of the distributional area in the Andes, in the N, E, and S (Patagonia). Phenetic analysis indicated close relationships among populations of the central ranges. Populations of the coastal Cordillera were shown to be highly differentiated from the Andean populations. It is very likely therefore that (1) H. palustris recolonized the central ranges of the southern Andes from nearby refugia, possibly unglaciated areas N, E, and/or S of its present distributional area; (2) the postglacial spread of H. palustris in the central ranges of the southern Andes occurred rapidly; and (3) the coastal Cordillera served as a refugium for H. palustris, but these populations did not contribute to the recolonization of the central Andean ranges.  相似文献   

19.
In highly clonal populations, mutation can contribute to the rate of apparent sexuality. To remove this bias, a method is presented that jointly estimates the rates of sexuality (Ns) and mutation (Nµ) for populations, based upon levels of single‐locus vs. multilocus clonal identity. This effectively haploid model assumes equilibrium, and can be used with dominant molecular data and in conjunction with organisms of various ploidies. Simulations indicate that while equilibrium can take thousands of generations to attain, and afterwards have a large evolutionary variance, the method gives approximate estimates of Ns.  相似文献   

20.
Nine karyotypes are described within a single species of common New Zealand tree weta. Their diploid numbers range from 11 to 25. The distribution of the karyotypes suggests that each had a single origin except the 17-karyotype which was the most common karyotype and had a disjunct distribution. The overall level of allozyme diversity observed is similar to that seen within many widespread taxa. The distribution of allozyme alleles did not coincide with the distribution of karyotypes within this species and the Neighbour-Joining tree was not concordant with the chromosome based sub-divisions of the species. Thus, no evidence was found to suggest that chromosomal differentiation has been acting as a barrier to the flow of alleles within H. thoracica. The lack of concordance of genetic markers is thought to result from rapid chromosome radiation and reticulate evolution. Northland peninsula of North Island, New Zealand is a region of high chromosomal and allozymic diversity in H. thoracica. This may have resulted from geographic isolation during the Pliocene when Northland formed an archipelago of many small low-lying islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号