首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Botrytis cinerea is a non-specific necrotrophic pathogen that attacks more than 200 plant species. In contrast to biotrophs, the necrotrophs obtain their nutrients by first killing the host cells. Many studies have shown that infection of plants by necrosis-causing pathogens induces a systemic acquired resistance (SAR), which provides protection against successive infections by a range of pathogenic organisms. We analyzed the role of SAR in B. cinerea infection of Arabidopsis. We show that although B. cinerea induced necrotic lesions and camalexin biosynthesis, it did not induce SAR-mediated protection against virulent strains of Pseudomonas syringae, or against subsequent B. cinerea infections. Induction of SAR with avirulent P. syringae or by chemical treatment with salicylic acid (SA) or benzothiadiazole also failed to inhibit B. cinerea growth, although removal of basal SA accumulation by expression of a bacterial salicylate hydroxylase (NahG) gene or by infiltration of 2-aminoindan-2-phosphonic acid, an inhibitor of phenylpropanoid pathway, increased B. cinerea disease symptoms. In addition, we show that B. cinerea induced expression of genes associated with SAR, general stress and ethylene/jasmonate-mediated defense pathways. Thus, B. cinerea does not induce SAR nor is it affected by SAR, making it a rare example of a necrogenic pathogen that does not cause SAR.  相似文献   

4.
The measurement of disease development is integral in studies on plant–microbe interactions. To address the need for a dynamic and quantitative disease evaluation, we developed PathTrack©, and used it to analyse the interaction of plants with Botrytis cinerea. PathTrack© is composed of an infection chamber, a photography unit and software that produces video files and numerical values of disease progression. We identified a previously unrecognized infection stage and determined numerical parameters of pathogenic development. Using these parameters, we identified differences in disease dynamics between seemingly similar B. cinerea pathogenicity mutants, and revealed new details on plant susceptibility to the fungus. We showed that the difference between the lesion expansion rate on leaves and colony spreading rate on artificial medium reflects the levels of the plant immune system, suggesting that this parameter can be used to quantify plant defence. Our results shed new light and reveal new details of the interaction between the model necrotrophic pathogen B. cinerea and plants. The concept that we present is universal and may be applied to facilitate the study of various types of plant–pathogen association.  相似文献   

5.
6.
7.
8.
DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN‐INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II‐interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)‐ and jasmonic acid (JA)/ethylene (ET)‐mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA‐induced cytotoxicity, it does not play a significant role in SA‐mediated expression of PATHOGENESIS‐RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET‐ and necrotrophic fungal pathogen Botrytis cinerea‐induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea‐induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N‐terminal P‐loop and a C‐terminal calmodulin (CaM)‐binding domain and is a CaM‐binding protein. We demonstrate that both the P‐loop and the CaM‐binding domain are essential for the function of DRL1 in B. cinerea‐induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding.  相似文献   

9.
10.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

11.
12.
Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied. In previous work, we have established that the epiphytic yeast Pseudozyma aphidis inhibits Botrytis cinerea through induced resistance and antibiosis. Here, we demonstrate that P. aphidis adheres to B. cinerea hyphae and competes with them for nutrients. We further show that the secreted antifungal compounds activate the production of reactive oxygen species and programmed cell death in B. cinerea mycelium. Finally, P. aphidis and its secreted compounds negatively affect B. cinerea hyphae, leading to morphological alterations, including hyphal curliness, vacuolization and branching, which presumably affects the colonization ability and infectivity of B. cinerea. This study demonstrates additional modes of action for P. aphidis and its antifungal compounds against the plant pathogen B. cinerea.  相似文献   

13.
A complex signal transduction network involving salicylic acid, jasmonic acid and ethylene underlies disease resistance in Arabidopsis. To understand this defence signalling network further, we identified mutants that expressed the marker gene PR-1::luciferase in the absence of pathogen infection. These cir mutants all display constitutive expression of a suite of defence-related genes but exhibit different disease resistance profiles to two biotrophic pathogens, Pseudomonas syringae pv. tomato and Peronospora parasitica NOCO2, and the necrotrophic pathogen Botrytis cinerea. We further characterized cir3, which displays enhanced resistance only to the necrotrophic pathogen. Cir3-mediated resistance to B. cinerea is dependent on accumulated salicylic acid and a functional EIN2 protein.  相似文献   

14.
15.
16.
Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma–plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR‐prime phase). Finally, we discuss the ISR‐boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.  相似文献   

17.
18.
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to Bcinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2O2-decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to Bcinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to Bcinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to Bcinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.  相似文献   

19.
20.
T2 ribonucleases (RNases) are RNA-degrading enzymes that function in various cellular processes, mostly via RNA metabolism. T2 RNase-encoding genes have been identified in various organisms, from bacteria to mammals, and are most diverse in plants. The existence of T2 RNase genes in almost every organism suggests an important biological function that has been conserved through evolution. In plants, T2 RNases are suggested to be involved in phosphate scavenging and recycling, and are implicated in defence responses to pathogens. We investigated the function of the tomato T2 RNase LE, known to be induced by phosphate deficiency and wounding. The possible involvement of LE in pathogen responses was examined. Expression analysis showed LE induction during fungal infection and by stimuli known to be associated with pathogen inoculation, including oxalic acid and hydrogen peroxide. Analysis of LE-suppressed transgenic tomato lines revealed higher susceptibility to oxalic acid, a cell death-inducing factor, compared to the wild type. This elevated sensitivity of LE-suppressed lines was evidenced by visual signs of necrosis, and increased ion leakage and reactive oxygen species levels, indicating acceleration of cell death. Challenge of the LE-suppressed lines with the necrotrophic pathogen Botrytis cinerea resulted in accelerated development of disease symptoms compared to the wild type, associated with suppressed expression of pathogenesis-related marker genes. The results suggest a role for plant endogenous T2 RNases in antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号