首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate concentration and nitrate reductase activity (NRA) were studied in the leaves of soybean (Glycine max), groundnut (Arachis hypogaea and cowpea (Vigna unguiculata) and sorghum (Sorghum bicolor), pearl millet (Pennisetum americanum) and maize (Zea mays) at three nitrogen fertiliser levels in two field experiments. Higher nitrate concentrations were detected in the leaves of groundnut, cowpea and pearl millet than in sorghum and maize. Nitrate content in the leaves and leaf NRA were not related across crop species, nor was a generalised pattern of leaf NRA and leaf nitrate observed within legumes or within cereals. Nitrogen application resulted in higher nitrate availability in the leaves, with varied leaf NRA.  相似文献   

2.
Nitrate reductase is one of the most important enzymes in the assimilation of exogenous nitrate—the predominant form of nitrogen available to green plants growing in soil. Activity of this enzyme in plants gives a good estimate of the nitrogen status of the plant and is very often correlated with growth and yield. Although it is difficult to explain the physiological significance and the mechanism of effects of several factors on the enzyme activity, in some cases suitable postulates have been advanced. In general, the enzyme activity in a plant tissue is a balance between its relative rates of synthesis/degradation and activation/inactivation. Factors may affect the overall activity by interfering with either of these processes.  相似文献   

3.
Factors influencing in vivo nitrate reductase activity in triticale (×Triticosecale Wittmack) primary leaves were investigated. Nitrate reductase activity was found to be a function of reaction time or tissue weight. In the range of 1–10 mm, the optimum slice width for nitrate reductase activity in triticale was found to be 1–2 mm. The optimum exogenous nitrate concentration is 300 mM. Substantial nitrite production was obtained even when exogenous nitrate was omitted from the assay. Of the five low molecular weight organic solvents tested, n-propanol is the most effective in enhancing enzyme activity. The optimum n-propanol concentration is 1% (v/v). The concentration of phosphate buffer (pH 6) does not affect nitrate reductase activity. Enzyme activity drops significantly below or above pH 6. In our system, nitrite production is enhanced by incubating under nitrogen, instead of air. The highest level of in vivo activity of nitrate reductase was found to be 10–15 cm from tip, which is close to the basal meristem of triticale primary leaves. Younger but physiologically mature leaves have higher nitrate reductase activity than old leaves.  相似文献   

4.
We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.  相似文献   

5.
Some characteristics of nitrate reductase induction in Lemna minor L.   总被引:1,自引:0,他引:1  
Summary Low levels of nitrate reductase can be detected in plants of Lemna minor grown on some organic nitrogen sources. Nitrogen-starvation does not lead to a derepression of nitrate reductase activity. Nitrate ions are necessary for the development of maximum enzyme activity and the maintenance of high enzyme levels. Nitrogen-starvation of ammonia-grown plants increases the subsequent rate of nitrate-mediated induction. It is suggested that ammonium ions, either directly or indirectly modulate the rate of nitrate reductase induction. The pattern of control regulating nitrate reductase levels in Lemna is contrasted with that in some species of algae.  相似文献   

6.
《Plant science》1988,57(2):119-125
Nitrate reductase (EC 1.6.6.1) catalyzes the pyridine nucleotide-linked reduction of nitrate to nitrite in higher plants. We have shown that in squash (Cucurbita maxima Duchesne var. Buttercup), exogenous nitrate increases nitrate reductase activity by increasing steady-state levels of nitrate reductase protein, while glutamine diminishes nitrate reductase activity both by decreasing steady-state levels of nitrate reductase protein and by decreasing cellular nitrate concentrations in plant cells. Other amino acids affect nitrate reductase similarly to glutamine; other metabolites tested including nitrate did not cause major perturbations in the synthesis of other cellular proteins. Thus, it appears that the effects of nitrate and reduced nitrogen compounds on enzymes of the nitrate assimilatory pathway are highly specific for these enzymes, and have little effect on other cellular proteins.  相似文献   

7.
A chlorate-resistant mutant B25 of Arabidopsis thaliana (L.) Heinh. was isolated, which has very little or no in vitro nitrate reductase activity and grows poorly on a substrate with nitrate as the sole nitrogen source. The mutation of B25 ( rgn ) is monogenic and recessive, tightly linked to the marker gene an on chromosome 1. Nitrate induces cytochrome- c reductase activity in the mutant but to a lower level than in the wildtype. After sucrose gradient centrifugation the greatest part of the cytochrome- c reductase from induced wildtype is found as 8s type whereas cytochrome- c reductase from B25 under the same conditions is found as 4s type. Nitrate reductase is found at the 8s position. It is suggested that B25 has lost the ability to assemble two 4s subunits showing cytochrome- c reductase activity and a Mo-bearing co-factor into the functional nitrate reductase. Nitrate rather than nitrite is the inducing agent for nitrite reductase, since in B25 nitrite reductase is even more rapidly induced than in the wildtype after addition of nitrate. Both the wildtype and B25 contain a nitrate reductase inhibiting factor when grown on ammonium. This inhibiting factor is a small protein, possibly similar to the nitrate reductase inactivating enzyme reported for other plants.  相似文献   

8.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

9.
The role of phytochrome in the induction of nitrate reductase of etiolated field peas (Pisum arvense L.) was examined. Terminal bud nitrate concentration increased in darkness, and the increase correlated with induction of nitrate reductase following brief exposure of intact plants to red, blue, far red, and white lights. Brief light exposure of intact plants stimulated nitrate uptake and induction of nitrate reductase by terminal buds subsequently excised and incubated on nitrate solution in darkness; exposure of excised buds in contact with nitrate led to less uptake but more induction. Nitrate and nitrate reductase activity both declined during incubation with water, irrespective of light treatment. Nitrate enrichment of intact terminal buds and uptake into excised buds and increases in nitrate reductase activity were all red/far red reversible. Dimethyl sulfoxide (1%, v/v) and sugars (sucrose 0.5%, glucose 1, w/v), although stimulating nitrate uptake into excised tissue in darkness, failed to enhance nitrate reductase activity over dark controls. Phytochrome may regulate nitrate reductase via both nitrate movement and a general mechanism such as enhancement of protein synthesis.  相似文献   

10.
C. B. Johnson 《Planta》1976,129(2):127-131
Summary Nitrate reductase in the cotyledons of etiolated seedlings of Sinapis alba L. responds rapidly to the addition of nitrate. The response is inhibited by cycloheximide at low concentrations. The enzyme is also under phytochrome control. Five minutes of red light irradiation leads instantaneously to a 45% increase in enzyme activity. Increases in activity, linear with respect to time and with no lag phases are promoted by continuous far-red or blue irradiation. These increases are insensitive to cycloheximide. Thus, light and nitrate act through different mechanisms in controlling nitrate reductase activity and phytochrome does not act via controlling the rate of synthesis of the enzyme.Abbreviation cot pr pair of cotyledons  相似文献   

11.
Circadian rhythmicity of nitrate reductase activity in barley leaves   总被引:2,自引:0,他引:2  
Nitrate reductase (EC 1.6.6.1) activity showed circadian rhythmicity in the first leaf of 8–11 days old barley ( Hordeum vulgare L. cv. Herta) plants. Circadian rhythms were found using both the in vitro and in vivo method for testing the enzyme activity. When the light intensity was reduced from 65 to 20 W m−2, the amplitude was smaller and the oscillations were damped sooner. In continuous darkness nitrate reductase activity decreased in a two step process. Three different light qualities were tested which all gave the same results.  相似文献   

12.
Summary Cells of Cyanidium caldarium grown with ammonia or ammonium nitrate as nitrogen source do not contain appreciable nitrate reductase activity. The alga develops the capacity to synthesize the enzyme when it is transferred from the ammonium medium to a nitrogen-free medium. Nitrate is not needed as an inducer and no enhancement in the rate of enzyme synthesis is observed when it is present. By contrast, whereas the synthesis of the enzyme in nitrogen-free medium proceeds at an increasing rate, in the nitrate medium it attains a stationary level after a short time.Nitrate grown cells possess variable amount of inactive nitrate reductase (from 9 to 60%) whereas in nitrogen-free medium the enzyme occurs principally in a fully active form. Addition of ammonia inactivates reversibly the preexisting enzyme. The inactive enzyme is measurable in the crude extract after activation by heating.It is suggested that in Cyanidium the inactivating effect of ammonia, which is the end product of nitrate reduction, in association with the repression of enzyme controls the level of nitrate reductase activity.  相似文献   

13.
Summary A biochemical analysis of mutants altered for nitrate assimilation in Neurospora crassa is described. Mutant alleles at each of the nine nit (nitrate-nonutilizing) loci were assayed for nitrate reductase activity, for three partial activities of nitrate reductase, and for nitrite reductase activity. In each case, the enzyme deficiency was consistent with data obtained from growth tests and complementation tests in previous studies. The mutant strains at these nit loci were also examined for altered regulation of enzyme synthesis. Such exeriments revealed that mutations which affect the structural integrity of the native nitrate reductase molecule can result in constitutive synthesis of this enzyme protein and of nitrite reductase. These results provide very strong evidence that, as in Aspergillus nidulans, nitrate reductase autogenously regulates the pathway of nitrate assimilation. However, only mutants at the nit-2 locus affect the regulation of this pathway by nitrogen metabolite repression.  相似文献   

14.
Summary Nitrate assimilation in the first trifoliate leaf of vegetative soybean plants (Glycine max L. Merr, cv Hodgson) was studied in relation to nodulation. Nodulated and non-nodulated plants were grown in a nitrate medium (4 mM). As a control nodulated plants were grown in a nutrient medium without combined nitrogen. This study included measurements of the acetylene reduction activity of the whole plant and of thein vitro nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities in the first leaf and of the nitrate concentration. Nitrate accumulation and nitrate reductase activity were depressed in nodulated plants; root growth was decreased in the presence of nitrate. The relationships between nitrate assimilation and nodulation are discussed.  相似文献   

15.
Nitrate reductase activity and protein concentration of two populas clones   总被引:1,自引:0,他引:1  
Nitrate reductase activity and protein percentage of various tree parts of two Populus clones were determined in relation to nitrate ion activity. Nitrogen was supplied as NH(4)NO(3) in a nutriculture system. Wisconsin-5 had significantly greater nitrate reductase activity than Tristis No. 1. Protein percentages of leaf plastochron index 10 leaves (tenth leaf below first leaf lamina exceeding 20 mm in length), bottom leaves, and roots in relation to nitrate ion activity were not appreciably different between clones. The nitrate reductase activity and protein percentage of Tristis No. 1 apex started to level off at the same nitrate ion activity, about 0.09 mm. In Wisconsin-5 apex protein percentage continued to increase at nitrate ion activities where nitrate reductase activity decreases sharply, suggesting that protein nitrogen was being supplied by ammonium ion. The difference in nitrate reductase activity between clones was probably due to genetically determined ability to synthesize nitrate reductase in response to nitrate ion. The expression of nitrate reductase activity was not an index of nitrogen assimilation ability but may be a useful index of growth potential when nitrate ion does not limit nitrate reductase synthesis.  相似文献   

16.
Nitrate reductase activity in leaf material ofLolium perenne L. cv. S24 was estimated using anin vivo assay method such that activity could be estimated at intervals of 5 minutes for up to two hours. The pattern of nitrate reductase activity, as estimated by nitrite accumulation, showed pronounced oscillatory behaviour with frequency of approximately 4 cycles per hour; at certain seasons however oscillatory activity was not shown. The phase of the oscillations observed in different experiments was not co-incident with respect to time of day.  相似文献   

17.
The occurrence of nitrate reductase in apple leaves   总被引:2,自引:2,他引:0       下载免费PDF全文
Nitrate reductase utilizing NADH or reduced flavin mononucleotide (FMNH2) as electron donor was extracted from the leaves, stems and petioles, and roots of apple seedlings. Successful extraction was made possible by the use of insoluble polyvinylpyrrolidone (Polyclar AT) which forms insoluble complexes with polyphenols and tannins. The level of nitrate reductase per gram fresh weight was highest in the leaf tissue although the nitrate content of the roots was much higher than that of the leaves. Nitrite reductase activity was detected only in leaf extracts and was 4 times higher than nitrate reductase activity. Nitrate was found in all parts of young apple trees and trace amounts were also detected in mature leaves from mature trees. Nitrate reductase was induced in young leaves of apple seedlings and in mature leaves from 3 fruit-bearing varieties. An inhibitor of polyphenoloxidase, 2-mercaptobenzothiazole was used in both the inducing medium and the extracting medium in concentrations from 10−3 to 10−5m with no effect upon nitrate reductase activity.  相似文献   

18.
Nitrate reductase (NR) activity and nitrite reductase (NiR) mRNA levels were monitored in Black Mexican Sweet maize (Zea mays L.) suspension cultures after the addition of nitrate. Maximal induction occurred with 20 millimolar nitrate and within 2 hours. Both NR and NiR mRNA were transiently induced with levels decreasing after the 2 hours despite the continued presence of nitrate in the medium. Neither ammonia nor chlorate prevented the induction of NR. Furthermore, removal of nitrate, followed by its readdition 22 to 48 hours later, did not result in reinduction of activity or message. NR was synthesized de novo, since cycloheximide completely blocked its induction. Cycloheximide had no effect on the induction of NiR mRNA or on the transient nature of its induction. These results are similar to those reported previously for maize seedlings.  相似文献   

19.
G. Gebauer  A. Melzer  H. Rehder 《Oecologia》1984,63(1):136-142
Summary With Rumex obtusifolius L., the influence of some environmental conditions on nitrate uptake and reduction were investigated. Nitrate concentrations of plant material were determined by HPLC, the activity of nitrate reductase by an in vivo test. As optimal incubation medium, a buffer containing 0.04 M KNO3; 0.25 M KH2PO4; 1.5% propanol (v/v); pH 8.0 was found. Vacuum infiltration caused an increase of enzyme activity of up to 40%.High nitrate concentrations were found in roots and leaf petioles. Nitrate reductase activity of these organs, however, was low. On the other hand, the highest nitrate reductase activity was observed in leaf laminae, which contained lowest nitrate concentrations.In leaves, nitrate content and nitrate reductase activity exhibited inverse diurnal fluctuations. During darkness, decreasing activities of the enzyme were followed by increasing nitrate concentrations, while during light the contrary was true. In petioles diurnal fluctuations in nitrate content were observed, too. No significant correlations with illumination, however, could be found.Our results prove that Rumex obtusifolius is characterized by an intensive nitrate turnover. Theoretically, internal nitrate content of the plant would be exhausted within a few hours, if a supply via the roots would be excluded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号